{"id":"https://openalex.org/W2964839244","doi":"https://doi.org/10.1109/iwssip.2019.8787213","title":"Multi-Stream Deep Convolutional Network Using High-Level Features Applied to Fall Detection in Video Sequences","display_name":"Multi-Stream Deep Convolutional Network Using High-Level Features Applied to Fall Detection in Video Sequences","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2964839244","doi":"https://doi.org/10.1109/iwssip.2019.8787213","mag":"2964839244"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwssip.2019.8787213","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5001449160","display_name":"Sarah Almeida Carneiro","orcid":"https://orcid.org/0000-0001-7653-8614"},"institutions":[{"id":"https://openalex.org/I181391015","display_name":"Universidade Estadual de Campinas (UNICAMP)","ror":"https://ror.org/04wffgt70","country_code":"BR","type":"education","lineage":["https://openalex.org/I181391015"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Sarah Almeida Carneiro","raw_affiliation_strings":["Institute of Computing, University of Campinas, Campinas, SP, 13083-852, Brazil"],"affiliations":[{"raw_affiliation_string":"Institute of Computing, University of Campinas, Campinas, SP, 13083-852, Brazil","institution_ids":["https://openalex.org/I181391015"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078487868","display_name":"Gabriel Pellegrino da Silva","orcid":null},"institutions":[{"id":"https://openalex.org/I181391015","display_name":"Universidade Estadual de Campinas (UNICAMP)","ror":"https://ror.org/04wffgt70","country_code":"BR","type":"education","lineage":["https://openalex.org/I181391015"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Gabriel Pellegrino da Silva","raw_affiliation_strings":["Institute of Computing, University of Campinas, Campinas, SP, 13083-852, Brazil"],"affiliations":[{"raw_affiliation_string":"Institute of Computing, University of Campinas, Campinas, SP, 13083-852, Brazil","institution_ids":["https://openalex.org/I181391015"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031977684","display_name":"Guilherme Vieira Leite","orcid":null},"institutions":[{"id":"https://openalex.org/I181391015","display_name":"Universidade Estadual de Campinas (UNICAMP)","ror":"https://ror.org/04wffgt70","country_code":"BR","type":"education","lineage":["https://openalex.org/I181391015"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Guilherme Vieira Leite","raw_affiliation_strings":["Institute of Computing, University of Campinas, Campinas, SP, 13083-852, Brazil"],"affiliations":[{"raw_affiliation_string":"Institute of Computing, University of Campinas, Campinas, SP, 13083-852, Brazil","institution_ids":["https://openalex.org/I181391015"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111887309","display_name":"Ricardo Moreno","orcid":null},"institutions":[],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Ricardo Moreno","raw_affiliation_strings":["Semantix Brasil, São Paulo, SP, 03178-200, Brazil"],"affiliations":[{"raw_affiliation_string":"Semantix Brasil, São Paulo, SP, 03178-200, Brazil","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070629635","display_name":"Silvio Jamil F. Guimar\u00e3es","orcid":"https://orcid.org/0000-0001-8522-2056"},"institutions":[{"id":"https://openalex.org/I170935008","display_name":"Pontif\u00edcia Universidade Cat\u00f3lica de Minas Gerais","ror":"https://ror.org/03j1rr444","country_code":"BR","type":"education","lineage":["https://openalex.org/I170935008"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Silvio Jamil F. Guimaraes","raw_affiliation_strings":["Computer Science Department, Pontifical Catholic University of Minas Gerais (PUC Minas), Belo Horizonte, MG, 30535-065, Brazil"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, Pontifical Catholic University of Minas Gerais (PUC Minas), Belo Horizonte, MG, 30535-065, Brazil","institution_ids":["https://openalex.org/I170935008"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5065725754","display_name":"H\u00e9lio Pedrini","orcid":"https://orcid.org/0000-0003-0125-630X"},"institutions":[{"id":"https://openalex.org/I181391015","display_name":"Universidade Estadual de Campinas (UNICAMP)","ror":"https://ror.org/04wffgt70","country_code":"BR","type":"education","lineage":["https://openalex.org/I181391015"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Helio Pedrini","raw_affiliation_strings":["Institute of Computing, University of Campinas, Campinas, SP, 13083-852, Brazil"],"affiliations":[{"raw_affiliation_string":"Institute of Computing, University of Campinas, Campinas, SP, 13083-852, Brazil","institution_ids":["https://openalex.org/I181391015"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.027,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":26,"citation_normalized_percentile":{"value":0.999876,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"293","last_page":"298"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/optical-flow","display_name":"Optical Flow","score":0.4895545}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83506763},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.79800594},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6419109},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5831336},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5826471},{"id":"https://openalex.org/C155542232","wikidata":"https://www.wikidata.org/wiki/Q736111","display_name":"Optical flow","level":3,"score":0.4895545},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46330836},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.43696553},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.36664888},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.10712144}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwssip.2019.8787213","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.48,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1534477342","https://openalex.org/W1986712960","https://openalex.org/W1988862459","https://openalex.org/W2034541299","https://openalex.org/W2074099390","https://openalex.org/W2076234758","https://openalex.org/W2096300942","https://openalex.org/W2108598243","https://openalex.org/W2131889717","https://openalex.org/W2149828712","https://openalex.org/W2156303437","https://openalex.org/W2248456305","https://openalex.org/W2394788533","https://openalex.org/W2403325839","https://openalex.org/W24089286","https://openalex.org/W2559085405","https://openalex.org/W2570475642","https://openalex.org/W2593493017","https://openalex.org/W2602476501","https://openalex.org/W2767362598","https://openalex.org/W2772973030","https://openalex.org/W2791268924","https://openalex.org/W2807854196","https://openalex.org/W2889184597","https://openalex.org/W2909383513","https://openalex.org/W2909645133","https://openalex.org/W645314983","https://openalex.org/W787785461"],"related_works":["https://openalex.org/W4386083130","https://openalex.org/W4375867731","https://openalex.org/W4312417841","https://openalex.org/W4293226380","https://openalex.org/W4226493464","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W2951211570","https://openalex.org/W2611989081","https://openalex.org/W2023355163"],"abstract_inverted_index":{"Sporadic":[0],"falls,":[1],"due":[2],"to":[3,52,81,121,152],"the":[4,14,55],"lack":[5],"of":[6,13,32,90,147],"balance":[7],"and":[8,62,100,103,149],"other":[9,153],"factors,":[10],"are":[11,119],"some":[12],"complications":[15],"that":[16,135],"elderly":[17],"people":[18],"might":[19],"experience":[20],"more":[21],"frequently":[22],"than":[23],"others.":[24],"Accordingly,":[25],"as":[26,40,77,107],"there":[27],"is":[28],"a":[29,64,111],"high":[30],"probability":[31],"these":[33,50,117],"events":[34],"causing":[35],"major":[36],"health":[37],"casualties,":[38],"such":[39],"bone":[41],"breaking":[42],"or":[43],"head":[44],"clots,":[45],"studies":[46],"have":[47,133],"been":[48],"monitoring":[49],"falls":[51],"rapidly":[53],"assist":[54],"victim.":[56],"In":[57,115],"this":[58,84],"work,":[59],"we":[60],"propose":[61],"evaluate":[63],"multi-stream":[65],"learning":[66],"model":[67],"based":[68],"on":[69],"convolutional":[70],"neural":[71],"networks":[72],"using":[73,104],"high-level":[74,92],"handcrafted":[75,93],"features":[76,124],"input":[78,109,140],"in":[79,128,145,158],"order":[80],"cope":[82],"with":[83],"situation.":[85],"Therefore,":[86],"our":[87,138,142],"approach":[88,143],"consists":[89],"extracting":[91],"features,":[94],"for":[95,110],"instance,":[96],"human":[97],"pose":[98],"estimation":[99],"optical":[101],"flow,":[102],"each":[105],"one":[106],"an":[108],"distinct":[112],"VGG-16":[113],"classifier.":[114],"addition,":[116],"experiments":[118],"able":[120],"showcase":[122],"what":[123],"can":[125],"be":[126],"used":[127],"fall":[129],"detection.":[130],"The":[131],"results":[132],"shown":[134],"by":[136],"assembling":[137],"directed":[139],"learners,":[141],"outperforms,":[144],"terms":[146],"accuracy":[148],"sensitivity":[150],"rates,":[151],"similar":[154],"tested":[155],"methods":[156],"found":[157],"literature.":[159]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2964839244","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-08T04:56:20.137912","created_date":"2019-08-13"}