{"id":"https://openalex.org/W2124302228","doi":"https://doi.org/10.1109/iwfhr.2004.57","title":"Improving the Structuring Search Space Method for Accelerating Large Set Character Recognition","display_name":"Improving the Structuring Search Space Method for Accelerating Large Set Character Recognition","publication_year":2004,"publication_date":"2004-12-23","ids":{"openalex":"https://openalex.org/W2124302228","doi":"https://doi.org/10.1109/iwfhr.2004.57","mag":"2124302228"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwfhr.2004.57","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://rdg.ext.hitachi.co.jp/iwfhr9/AfterWS/IWFHR9-Proceedings/docs/042_x_yang-Accelerat.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071675435","display_name":"Yiping Yang","orcid":"https://orcid.org/0000-0002-1291-7460"},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"None Yiping Yang","raw_affiliation_strings":["Graduate Sch. of Technol., Tokyo Univ. of Agric. & Technol. Affiliation, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate Sch. of Technol., Tokyo Univ. of Agric. & Technol. Affiliation, Japan","institution_ids":["https://openalex.org/I74801974"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014835275","display_name":"Masaki Nakagawa","orcid":"https://orcid.org/0000-0001-7872-156X"},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"M. Nakagawa","raw_affiliation_strings":["Graduate Sch. of Technol., Tokyo Univ. of Agric. & Technol. Affiliation, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate Sch. of Technol., Tokyo Univ. of Agric. & Technol. Affiliation, Japan","institution_ids":["https://openalex.org/I74801974"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.414,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":9,"citation_normalized_percentile":{"value":0.685846,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"251","last_page":"256"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/centroid","display_name":"Centroid","score":0.80023134},{"id":"https://openalex.org/keywords/structuring","display_name":"Structuring","score":0.679108},{"id":"https://openalex.org/keywords/line-segment","display_name":"Line segment","score":0.41305536},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.41058296}],"concepts":[{"id":"https://openalex.org/C146599234","wikidata":"https://www.wikidata.org/wiki/Q511093","display_name":"Centroid","level":2,"score":0.80023134},{"id":"https://openalex.org/C2775945657","wikidata":"https://www.wikidata.org/wiki/Q381442","display_name":"Structuring","level":2,"score":0.679108},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6670884},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.599353},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5375004},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.5365427},{"id":"https://openalex.org/C164866538","wikidata":"https://www.wikidata.org/wiki/Q367351","display_name":"Cluster (spacecraft)","level":2,"score":0.48090196},{"id":"https://openalex.org/C2780861071","wikidata":"https://www.wikidata.org/wiki/Q1062934","display_name":"Character (mathematics)","level":2,"score":0.4615173},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.4545795},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4519784},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4390661},{"id":"https://openalex.org/C182124507","wikidata":"https://www.wikidata.org/wiki/Q166154","display_name":"Line segment","level":2,"score":0.41305536},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.41058296},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37979254},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3244185},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwfhr.2004.57","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.915.7549","pdf_url":"https://rdg.ext.hitachi.co.jp/iwfhr9/AfterWS/IWFHR9-Proceedings/docs/042_x_yang-Accelerat.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.915.7549","pdf_url":"https://rdg.ext.hitachi.co.jp/iwfhr9/AfterWS/IWFHR9-Proceedings/docs/042_x_yang-Accelerat.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W2002101849","https://openalex.org/W2016713514","https://openalex.org/W2028874973","https://openalex.org/W2038658268","https://openalex.org/W2040193698","https://openalex.org/W2049970057","https://openalex.org/W2082145875","https://openalex.org/W2096306508","https://openalex.org/W2124926930","https://openalex.org/W2126012401","https://openalex.org/W2134383396","https://openalex.org/W2136549839","https://openalex.org/W2149872361","https://openalex.org/W2337121428"],"related_works":["https://openalex.org/W756498608","https://openalex.org/W4251394462","https://openalex.org/W2486167009","https://openalex.org/W2391393290","https://openalex.org/W2381926679","https://openalex.org/W2135201366","https://openalex.org/W1987872819","https://openalex.org/W1595575899","https://openalex.org/W1580673008","https://openalex.org/W1510936208"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"enhancement":[3],"of":[4,27,55,65,75,82,138,152,236,251],"the":[5,22,29,36,45,56,63,76,80,98,113,117,125,136,139,150,156,179,184,190,196,216,223,258,261,270,279],"\"structuring":[6],"search":[7,30,50],"space":[8,31],"\"":[9],"(SSS)":[10],"method":[11],"attempted":[12],"in":[13,124,189,204,212],"[Y.":[14],"Yang,":[15],"et":[16],"al.,":[17],"(2003)]":[18],"to":[19,112,267,276,292],"further":[20],"accelerate":[21],"recognition":[23,272,287],"speed.":[24],"It":[25],"consists":[26],"structuring":[28],"into":[32,58,243],"two":[33],"layers,":[34],"improving":[35],"candidate":[37,167,173,175,181,225],"selection":[38,168,176],"algorithm":[39,169],"and":[40,61,78,101,133,170,226,254,269],"selecting":[41,232],"candidates":[42,145,200],"depending":[43],"on":[44,198],"top":[46,172,180,224],"candidate.":[47],"For":[48],"two-layered":[49],"space,":[51,192],"we":[52,163],"divide":[53],"all":[54,74,97],"prototypes":[57,134,153],"smaller":[59],"clusters":[60,104,137],"derive":[62,79],"centroid":[64,81],"each":[66,83,213],"cluster":[67,73,84],"as":[68,87,144,222],"a":[69,88,165,171,233,244,284],"pivot,":[70],"then":[71],"again":[72],"pivots":[77,100,109,123,130,141],"(super":[85],"cluster)":[86],"super":[89,99,103,108,127],"pivot.":[90],"An":[91],"input":[92,114,118,157,185],"pattern":[93,119,158,186],"is":[94,120,159,187,210,220,265,274],"compared":[95,121,154],"with":[96,122,155,257],"several":[102],"are":[105,110,131,142,229],"selected":[106,126,132,140,203,221],"whose":[107],"close":[111,129],"pattern.":[115],"Then,":[116],"clusters,":[128],"within":[135],"treated":[143],"for":[146,215,231],"fine":[147,255],"classification.":[148,206],"Thus,":[149,207],"number":[151,235],"greatly":[160],"reduced.":[161],"Moreover,":[162],"employ":[164],"synthetic":[166],"dependent":[174],"method.":[177],"Since":[178],"suggests":[182],"where":[183],"mapped":[188],"feature":[191],"it":[193,219],"can":[194],"provide":[195],"information":[197,209],"how":[199],"should":[201],"be":[202],"coarse":[205,252,262],"this":[208],"specified":[211,227],"prototype":[214],"case":[217],"when":[218],"values":[228],"employed":[230],"variable":[234],"candidates.":[237],"These":[238],"improvements":[239],"have":[240],"been":[241],"incorporated":[242],"practical":[245],"off-line":[246],"Japanese":[247],"character":[248],"recognizer":[249],"consisting":[250],"classification":[253,256,263],"result":[259],"that":[260],"time":[264,273,281],"reduced":[266,275],"28.6%":[268],"whole":[271],"31.3%":[277],"from":[278],"original":[280],"while":[282],"sacrificing":[283],"very":[285],"limited":[286],"rate":[288],"(98.":[289],"1":[290],"%":[291],"97.7%).":[293]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2124302228","counts_by_year":[{"year":2015,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2024-12-11T09:23:24.292855","created_date":"2016-06-24"}