{"id":"https://openalex.org/W2142956834","doi":"https://doi.org/10.1109/iwfhr.2004.46","title":"Generative Models and Bayesian Model Comparison for Shape Recognition","display_name":"Generative Models and Bayesian Model Comparison for Shape Recognition","publication_year":2004,"publication_date":"2004-12-23","ids":{"openalex":"https://openalex.org/W2142956834","doi":"https://doi.org/10.1109/iwfhr.2004.46","mag":"2142956834"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwfhr.2004.46","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5033095484","display_name":"Balaji Krishnapuram","orcid":null},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"B. Krishnapuram","raw_affiliation_strings":["Microsoft Research, Cambridge, UK;"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Cambridge, UK;","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101860691","display_name":"C.M. Bishop","orcid":"https://orcid.org/0009-0008-0256-2767"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"C.M. Bishop","raw_affiliation_strings":["Microsoft Research, Cambridge, UK;"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Cambridge, UK;","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5043531170","display_name":"Martin Szummer","orcid":null},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"M. Szummer","raw_affiliation_strings":["Microsoft Research, Cambridge, UK;"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Cambridge, UK;","institution_ids":["https://openalex.org/I1290206253"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.276,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":18,"citation_normalized_percentile":{"value":0.685846,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":"10","issue":null,"first_page":"20","last_page":"25"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9896,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9888,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.63405085}],"concepts":[{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.7778326},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73723245},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.6718601},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.6424502},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64228785},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.63405085},{"id":"https://openalex.org/C114289077","wikidata":"https://www.wikidata.org/wiki/Q3284399","display_name":"Statistical model","level":2,"score":0.601129},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.5667427},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5315934},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46647745},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.41420195},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.06953037},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwfhr.2004.46","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":6,"referenced_works":["https://openalex.org/W2021123210","https://openalex.org/W2049633694","https://openalex.org/W2080205931","https://openalex.org/W2107636931","https://openalex.org/W2115168841","https://openalex.org/W2143877328"],"related_works":["https://openalex.org/W4387506531","https://openalex.org/W4380551139","https://openalex.org/W4365211920","https://openalex.org/W4317695495","https://openalex.org/W4299831724","https://openalex.org/W4287117424","https://openalex.org/W4283803360","https://openalex.org/W4238433571","https://openalex.org/W3014948380","https://openalex.org/W2967848559"],"abstract_inverted_index":{"Recognition":[0],"of":[1,36,54,63,72],"hand-drawn":[2],"shapes":[3,37,43],"is":[4],"an":[5],"important":[6],"and":[7,24,38,87],"widely":[8],"studied":[9],"problem.":[10],"By":[11],"adopting":[12],"a":[13,22,33,45,64,70],"generative":[14],"probabilistic":[15,52,66],"framework":[16,67],"we":[17],"are":[18],"able":[19],"to":[20,27,90],"formulate":[21],"robust":[23],"flexible":[25],"approach":[26],"shape":[28],"recognition":[29],"which":[30,39,57],"allows":[31,81],"for":[32,68],"wide":[34],"range":[35],"can":[40,58],"recognize":[41],"new":[42],"from":[44],"single":[46],"exemplar.":[47],"It":[48],"also":[49,75],"provides":[50],"meaningful":[51],"measures":[53],"model":[55,79,88],"score,":[56],"be":[59,91],"used":[60],"as":[61],"part":[62],"larger":[65],"interpreting":[69],"page":[71],"ink.":[73],"We":[74],"show":[76],"how":[77],"Bayesian":[78],"comparison":[80],"the":[82],"trade-off":[83],"between":[84],"data":[85],"fit":[86],"complexity":[89],"optimized":[92],"automatically.":[93]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2142956834","counts_by_year":[{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-15T18:58:40.893377","created_date":"2016-06-24"}