{"id":"https://openalex.org/W2136623338","doi":"https://doi.org/10.1109/iwfhr.2004.24","title":"Boosting Driven by Error Free Regions","display_name":"Boosting Driven by Error Free Regions","publication_year":2004,"publication_date":"2004-12-23","ids":{"openalex":"https://openalex.org/W2136623338","doi":"https://doi.org/10.1109/iwfhr.2004.24","mag":"2136623338"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwfhr.2004.24","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024736291","display_name":"R. Lindwurm","orcid":null},"institutions":[{"id":"https://openalex.org/I1325886976","display_name":"Siemens (Germany)","ror":"https://ror.org/059mq0909","country_code":"DE","type":"company","lineage":["https://openalex.org/I1325886976"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"R. Lindwurm","raw_affiliation_strings":["Siemens Dematic AG, Konstanz, Germany"],"affiliations":[{"raw_affiliation_string":"Siemens Dematic AG, Konstanz, Germany","institution_ids":["https://openalex.org/I1325886976"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108524404","display_name":"J. Rottland","orcid":null},"institutions":[{"id":"https://openalex.org/I1325886976","display_name":"Siemens (Germany)","ror":"https://ror.org/059mq0909","country_code":"DE","type":"company","lineage":["https://openalex.org/I1325886976"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"J. Rottland","raw_affiliation_strings":["Siemens Dematic AG, Konstanz, Germany"],"affiliations":[{"raw_affiliation_string":"Siemens Dematic AG, Konstanz, Germany","institution_ids":["https://openalex.org/I1325886976"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"75","last_page":"80"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9816,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.64934784},{"id":"https://openalex.org/keywords/margin-classifier","display_name":"Margin classifier","score":0.6100384},{"id":"https://openalex.org/keywords/quadratic-classifier","display_name":"Quadratic classifier","score":0.51381284}],"concepts":[{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.81456935},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67596537},{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.64934784},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64488447},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.62365353},{"id":"https://openalex.org/C173102733","wikidata":"https://www.wikidata.org/wiki/Q6760396","display_name":"Margin classifier","level":3,"score":0.6100384},{"id":"https://openalex.org/C52620605","wikidata":"https://www.wikidata.org/wiki/Q7268357","display_name":"Quadratic classifier","level":3,"score":0.51381284},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49592766}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwfhr.2004.24","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.6,"display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1540371141","https://openalex.org/W1548502347","https://openalex.org/W1850501806","https://openalex.org/W2188701450","https://openalex.org/W27881537","https://openalex.org/W2791805171","https://openalex.org/W2799061466","https://openalex.org/W2799148064","https://openalex.org/W2912934387","https://openalex.org/W4212883601","https://openalex.org/W4253405001"],"related_works":["https://openalex.org/W47559851","https://openalex.org/W2297694731","https://openalex.org/W2162083125","https://openalex.org/W2125266525","https://openalex.org/W2096969571","https://openalex.org/W2071988253","https://openalex.org/W204488290","https://openalex.org/W2010370304","https://openalex.org/W2009506202","https://openalex.org/W1483596504"],"abstract_inverted_index":{"Multiple":[0],"classifier":[1,31,39,59,65,149],"systems":[2],"improve":[3],"the":[4,44,80,91,109,124,128,133,144,147,173],"recognition":[5,19,104],"performance":[6],"of":[7,132,168],"a":[8,29,51,57,64,103,166],"discrimination":[9,145],"task":[10],"considerably,":[11],"which":[12,107],"makes":[13],"them":[14],"very":[15],"attractive":[16],"for":[17,130],"pattern":[18],"products.":[20],"Two":[21],"aspects":[22],"are":[23],"eminently":[24],"important:":[25],"firstly,":[26],"how":[27],"can":[28],"powerful":[30,58],"ensemble":[32,66],"be":[33],"generated":[34],"effectively":[35],"and":[36,115,157,165],"secondly,":[37],"what":[38],"combination":[40],"rule":[41],"would":[42],"produce":[43],"best":[45],"collective":[46],"result.":[47],"This":[48],"paper":[49],"proposes":[50],"new":[52],"boosting":[53],"strategy,":[54],"to":[55,123],"generate":[56],"ensemble.":[60],"The":[61,74,99,120,137],"strategy":[62],"trains":[63],"by":[67,95],"using":[68],"sequentially":[69],"selected":[70,97],"learning":[71,82],"sample":[72,83],"subsets.":[73],"first":[75],"subset":[76,87,94,111,139],"is":[77,88,102,140,150],"gained":[78],"from":[79,90],"initial":[81],"set.":[84],"Each":[85],"following":[86],"obtained":[89],"previous":[92],"steps":[93],"eliminating":[96],"items.":[98],"selection":[100],"criterion":[101],"quality":[105],"limit,":[106],"divides":[108],"actual":[110],"into":[112],"error":[113,116],"free":[114],"containing":[117],"result":[118],"regions.":[119],"portion":[121],"corresponding":[122],"error-containing":[125],"region":[126],"provides":[127],"basis":[129],"development":[131],"next":[134],"step":[135],"classifier.":[136],"sampling":[138],"reduced":[141],"iteratively":[142],"until":[143],"with":[146],"last-trained":[148],"almost":[151],"errorless.":[152],"A":[153],"boost":[154],"system,":[155],"designed":[156],"developed":[158],"in":[159,172],"this":[160],"way,":[161],"shows":[162],"excellent":[163],"reclassification":[164],"reduction":[167],"about":[169],"30":[170],"percent":[171],"generalization":[174],"error.":[175]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2136623338","counts_by_year":[],"updated_date":"2024-12-13T08:59:16.250649","created_date":"2016-06-24"}