{"id":"https://openalex.org/W2121280540","doi":"https://doi.org/10.1109/iwfhr.2004.108","title":"Using Informational Confidence Values for Classifier Combination: An Experiment with Combined On-Line/Off-Line Japanese Character Recognition","display_name":"Using Informational Confidence Values for Classifier Combination: An Experiment with Combined On-Line/Off-Line Japanese Character Recognition","publication_year":2004,"publication_date":"2004-12-23","ids":{"openalex":"https://openalex.org/W2121280540","doi":"https://doi.org/10.1109/iwfhr.2004.108","mag":"2121280540"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwfhr.2004.108","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035100758","display_name":"Stefan Jaeger","orcid":"https://orcid.org/0000-0001-6877-4318"},"institutions":[{"id":"https://openalex.org/I66946132","display_name":"University of Maryland, College Park","ror":"https://ror.org/047s2c258","country_code":"US","type":"education","lineage":["https://openalex.org/I66946132"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"S. Jaeger","raw_affiliation_strings":["Inst. for Adv. Comput. Studies, Maryland Univ., College Park, MD, USA"],"affiliations":[{"raw_affiliation_string":"Inst. for Adv. Comput. Studies, Maryland Univ., College Park, MD, USA","institution_ids":["https://openalex.org/I66946132"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5035100758"],"corresponding_institution_ids":["https://openalex.org/I66946132"],"apc_list":null,"apc_paid":null,"fwci":1.035,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":9,"citation_normalized_percentile":{"value":0.58802,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"87","last_page":"92"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/heuristics","display_name":"Heuristics","score":0.6801701},{"id":"https://openalex.org/keywords/low-confidence","display_name":"Low Confidence","score":0.49945855}],"concepts":[{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.78381526},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68354845},{"id":"https://openalex.org/C127705205","wikidata":"https://www.wikidata.org/wiki/Q5748245","display_name":"Heuristics","level":2,"score":0.6801701},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.63355243},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5421648},{"id":"https://openalex.org/C2909755999","wikidata":"https://www.wikidata.org/wiki/Q4751126","display_name":"Low Confidence","level":2,"score":0.49945855},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.43247998},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwfhr.2004.108","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1598886335","https://openalex.org/W1995875735","https://openalex.org/W2033670611","https://openalex.org/W2035085138","https://openalex.org/W2040187367","https://openalex.org/W2096393007","https://openalex.org/W2100107103","https://openalex.org/W2101040242","https://openalex.org/W2102734279","https://openalex.org/W2115675483","https://openalex.org/W2115939505","https://openalex.org/W2123923518","https://openalex.org/W2126297944","https://openalex.org/W2132549764","https://openalex.org/W2140685796","https://openalex.org/W2145073242","https://openalex.org/W2149724903","https://openalex.org/W2158275940","https://openalex.org/W2164568552","https://openalex.org/W2172169170","https://openalex.org/W2912934387","https://openalex.org/W4212883601","https://openalex.org/W4240021943"],"related_works":["https://openalex.org/W4252555497","https://openalex.org/W3143197806","https://openalex.org/W3121175838","https://openalex.org/W3016293053","https://openalex.org/W2952904874","https://openalex.org/W2784269775","https://openalex.org/W2401723157","https://openalex.org/W2280422768","https://openalex.org/W2065055572","https://openalex.org/W1690653314"],"abstract_inverted_index":{"Classifier":[0],"combination":[1,60],"has":[2,38],"turned":[3],"out":[4],"to":[5,80,141],"be":[6],"a":[7,22,42,87,108],"powerful":[8,23],"tool":[9],"for":[10,68,116,149],"achieving":[11],"high":[12],"recognition":[13,154,162],"rates,":[14],"especially":[15],"in":[16,41,85],"fields":[17],"where":[18],"the":[19,31,101,113,130,134,138,159],"development":[20],"of":[21,34,99,107,145],"single":[24,161],"classifier":[25,36],"system":[26],"requires":[27],"considerable":[28],"efforts.":[29],"However,":[30],"intensive":[32],"investigation":[33],"multiple":[35],"systems":[37,52],"not":[39],"resulted":[40],"convincing":[43],"theoretical":[44],"foundation":[45],"yet.":[46],"Lacking":[47],"proper":[48],"mathematical":[49],"concepts,":[50],"many":[51],"still":[53],"use":[54,137],"empirical":[55],"heuristics":[56],"and":[57],"ad":[58],"hoc":[59],"schemes.":[61],"The":[62,76],"paper":[63],"presents":[64],"an":[65,121],"information-theoretical":[66],"framework":[67],"combining":[69],"confidence":[70,83,118,127,143],"values":[71,144],"generated":[72],"by":[73,105],"different":[74,146],"classifiers.":[75,147],"main":[77],"idea":[78],"is":[79],"normalize":[81],"each":[82,117,126],"value":[84,119,128],"such":[86],"way":[88],"that":[89,111],"it":[90],"equals":[91],"its":[92],"informational":[93],"content.":[94],"Based":[95],"on":[96,120],"Shannon's":[97],"notion":[98],"information,":[100],"author":[102,135],"measure":[103],"information":[104,131],"means":[106],"performance":[109,115],"function":[110],"estimates":[112],"classification":[114],"evaluation":[122],"set.":[123],"Having":[124],"equalized":[125],"with":[129],"actually":[132],"conveyed,":[133],"can":[136],"elementary":[139],"sum-rule":[140],"combine":[142],"Experiments":[148],"combined":[150],"on-line/off-line":[151],"Japanese":[152],"character":[153],"show":[155],"clear":[156],"improvements":[157],"over":[158],"best":[160],"rate.":[163]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2121280540","counts_by_year":[{"year":2015,"cited_by_count":1}],"updated_date":"2024-12-17T10:14:24.626865","created_date":"2016-06-24"}