{"id":"https://openalex.org/W2140891369","doi":"https://doi.org/10.1109/iwfhr.2004.1","title":"A Classifier Based on Distance between Test Samples and Average Patterns of Categorical Nearest Neighbors","display_name":"A Classifier Based on Distance between Test Samples and Average Patterns of Categorical Nearest Neighbors","publication_year":2004,"publication_date":"2004-12-23","ids":{"openalex":"https://openalex.org/W2140891369","doi":"https://doi.org/10.1109/iwfhr.2004.1","mag":"2140891369"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwfhr.2004.1","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://nagasaki-u.repo.nii.ac.jp/record/20366/files/IEEE_CS21870045.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5059168563","display_name":"S. Hotta","orcid":"https://orcid.org/0009-0006-6448-5184"},"institutions":[{"id":"https://openalex.org/I43777268","display_name":"Nagasaki University","ror":"https://ror.org/058h74p94","country_code":"JP","type":"education","lineage":["https://openalex.org/I43777268"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"S. Hotta","raw_affiliation_strings":["Dept. of Comput. & Inf. Sci., Nagasaki Univ., Japan"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. & Inf. Sci., Nagasaki Univ., Japan","institution_ids":["https://openalex.org/I43777268"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001743183","display_name":"Senya Kiyasu","orcid":null},"institutions":[{"id":"https://openalex.org/I43777268","display_name":"Nagasaki University","ror":"https://ror.org/058h74p94","country_code":"JP","type":"education","lineage":["https://openalex.org/I43777268"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"S. Kiyasu","raw_affiliation_strings":["Dept. of Comput. & Inf. Sci., Nagasaki Univ., Japan"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. & Inf. Sci., Nagasaki Univ., Japan","institution_ids":["https://openalex.org/I43777268"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108357945","display_name":"Sueharu Miyahara","orcid":null},"institutions":[{"id":"https://openalex.org/I43777268","display_name":"Nagasaki University","ror":"https://ror.org/058h74p94","country_code":"JP","type":"education","lineage":["https://openalex.org/I43777268"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"S. Miyahara","raw_affiliation_strings":["Dept. of Comput. & Inf. Sci., Nagasaki Univ., Japan"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. & Inf. Sci., Nagasaki Univ., Japan","institution_ids":["https://openalex.org/I43777268"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.279,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.451272,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":61,"max":68},"biblio":{"volume":null,"issue":null,"first_page":"45","last_page":"50"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/categorical-variable","display_name":"Categorical variable","score":0.68077457},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.48276654},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.4244523}],"concepts":[{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.8451794},{"id":"https://openalex.org/C113238511","wikidata":"https://www.wikidata.org/wiki/Q1071612","display_name":"k-nearest neighbors algorithm","level":2,"score":0.7021397},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.681057},{"id":"https://openalex.org/C5274069","wikidata":"https://www.wikidata.org/wiki/Q2285707","display_name":"Categorical variable","level":2,"score":0.68077457},{"id":"https://openalex.org/C102366305","wikidata":"https://www.wikidata.org/wiki/Q1097688","display_name":"Nonparametric statistics","level":2,"score":0.65064394},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.59184235},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.5559323},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.53899294},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.48276654},{"id":"https://openalex.org/C32834561","wikidata":"https://www.wikidata.org/wiki/Q660730","display_name":"Subspace topology","level":2,"score":0.45070028},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.4244523},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.41076183},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.2653979},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.19255465},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwfhr.2004.1","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/10069/16322","pdf_url":"https://nagasaki-u.repo.nii.ac.jp/record/20366/files/IEEE_CS21870045.pdf","source":{"id":"https://openalex.org/S4306400113","display_name":"Nagasaki University's Academic Output SITE (Nagasaki University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I43777268","host_organization_name":"Nagasaki University","host_organization_lineage":["https://openalex.org/I43777268"],"host_organization_lineage_names":["Nagasaki University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://hdl.handle.net/10069/16322","pdf_url":"https://nagasaki-u.repo.nii.ac.jp/record/20366/files/IEEE_CS21870045.pdf","source":{"id":"https://openalex.org/S4306400113","display_name":"Nagasaki University's Academic Output SITE (Nagasaki University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I43777268","host_organization_name":"Nagasaki University","host_organization_lineage":["https://openalex.org/I43777268"],"host_organization_lineage_names":["Nagasaki University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1490760466","https://openalex.org/W1526146785","https://openalex.org/W1564660545","https://openalex.org/W1968643855","https://openalex.org/W1981190555","https://openalex.org/W2024986448","https://openalex.org/W2037278428","https://openalex.org/W2108995755","https://openalex.org/W2112796928","https://openalex.org/W2130695501","https://openalex.org/W2135346934","https://openalex.org/W2147800946","https://openalex.org/W2148603752","https://openalex.org/W2153635508","https://openalex.org/W2310919327","https://openalex.org/W2544241447","https://openalex.org/W3120421331"],"related_works":["https://openalex.org/W4386799044","https://openalex.org/W4243114048","https://openalex.org/W4237896776","https://openalex.org/W3124876457","https://openalex.org/W3122670876","https://openalex.org/W2773208253","https://openalex.org/W2560646951","https://openalex.org/W2375795576","https://openalex.org/W2012244993","https://openalex.org/W1983936910"],"abstract_inverted_index":{"The":[0,95],"recognition":[1,36,93],"rate":[2],"of":[3,17,33,55,97],"the":[4,15,30,53,61,64,68],"typical":[5],"nonparametric":[6,23],"method":[7,24,83],"\"k-nearest":[8],"neighbor":[9],"rule":[10],"(kNN)\"":[11],"is":[12,20,42,100],"degraded":[13],"when":[14,39],"dimensionality":[16],"feature":[18],"vectors":[19],"large.":[21],"Another":[22],"\"linear":[25],"subspace":[26],"methods\"":[27],"cannot":[28],"represent":[29],"local":[31],"distribution":[32,41],"patterns,":[34,70],"so":[35],"rates":[37],"decrease":[38],"pattern":[40],"not":[43],"normal":[44],"distribution.":[45],"This":[46],"paper":[47],"presents":[48],"a":[49,56],"classifier":[50,89],"that":[51],"outputs":[52],"class":[54,110],"test":[57,65],"sample":[58,66],"by":[59,102],"measuring":[60],"distance":[62],"between":[63],"and":[67,108],"average":[69],"which":[71],"are":[72],"calculated":[73],"using":[74],"nearest":[75],"neighbors":[76],"belonging":[77],"to":[78,87],"individual":[79],"categories.":[80],"A":[81],"kernel":[82],"can":[84],"be":[85],"applied":[86],"this":[88],"for":[90],"improving":[91],"its":[92],"rates.":[94],"performance":[96],"those":[98],"methods":[99],"verified":[101],"experiments":[103],"with":[104],"handwritten":[105],"digit":[106],"patterns":[107],"two":[109],"artificial":[111],"ones.":[112]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2140891369","counts_by_year":[],"updated_date":"2024-12-10T07:48:29.377075","created_date":"2016-06-24"}