{"id":"https://openalex.org/W3190676332","doi":"https://doi.org/10.1109/iwcmc51323.2021.9498584","title":"A Local Dominance Based Single Source Points Detector for Mixing Matrix Estimation","display_name":"A Local Dominance Based Single Source Points Detector for Mixing Matrix Estimation","publication_year":2021,"publication_date":"2021-06-28","ids":{"openalex":"https://openalex.org/W3190676332","doi":"https://doi.org/10.1109/iwcmc51323.2021.9498584","mag":"3190676332"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwcmc51323.2021.9498584","pdf_url":null,"source":{"id":"https://openalex.org/S4363605313","display_name":"2022 International Wireless Communications and Mobile Computing (IWCMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5049076862","display_name":"Yuyang Huang","orcid":"https://orcid.org/0009-0008-0433-5541"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"education","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yu-Yang Huang","raw_affiliation_strings":["Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101994814","display_name":"Ping Chu","orcid":"https://orcid.org/0000-0002-8537-273X"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"education","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ping Chu","raw_affiliation_strings":["Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5049024305","display_name":"Bin Liao","orcid":"https://orcid.org/0000-0003-4636-4339"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"education","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bin Liao","raw_affiliation_strings":["Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11233","display_name":"Advanced Adaptive Filtering Techniques","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.65438783},{"id":"https://openalex.org/keywords/underdetermined-system","display_name":"Underdetermined system","score":0.5362854},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.52053416},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.47736216}],"concepts":[{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.6656579},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.65438783},{"id":"https://openalex.org/C185142706","wikidata":"https://www.wikidata.org/wiki/Q1134404","display_name":"Covariance matrix","level":2,"score":0.5779021},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5389446},{"id":"https://openalex.org/C179690561","wikidata":"https://www.wikidata.org/wiki/Q4316110","display_name":"Underdetermined system","level":2,"score":0.5362854},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.5216349},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.52053416},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.49822044},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.47736216},{"id":"https://openalex.org/C180877172","wikidata":"https://www.wikidata.org/wiki/Q5401390","display_name":"Estimation of covariance matrices","level":3,"score":0.46813},{"id":"https://openalex.org/C138777275","wikidata":"https://www.wikidata.org/wiki/Q6884054","display_name":"Mixing (physics)","level":2,"score":0.42586613},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.39038256},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3650815},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.2779773},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.25309873},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.10383856},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0901106},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.071237326},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwcmc51323.2021.9498584","pdf_url":null,"source":{"id":"https://openalex.org/S4363605313","display_name":"2022 International Wireless Communications and Mobile Computing (IWCMC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61771316"},{"funder":"https://openalex.org/F4320333334","funder_display_name":"Guangdong Province Introduction of Innovative R&D Team","award_id":"2020A1515010410"}],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1814775863","https://openalex.org/W1956364622","https://openalex.org/W1987906574","https://openalex.org/W1992419399","https://openalex.org/W2032665768","https://openalex.org/W2077626982","https://openalex.org/W2129062845","https://openalex.org/W2129391959","https://openalex.org/W2142638745","https://openalex.org/W2145193067","https://openalex.org/W2153909896","https://openalex.org/W2158456262","https://openalex.org/W2168975387","https://openalex.org/W2528648358","https://openalex.org/W2914427333","https://openalex.org/W2924735446","https://openalex.org/W3116585630","https://openalex.org/W3139939952","https://openalex.org/W3148833425"],"related_works":["https://openalex.org/W4286579657","https://openalex.org/W2921280830","https://openalex.org/W2887132723","https://openalex.org/W2756533552","https://openalex.org/W2572601863","https://openalex.org/W2118568436","https://openalex.org/W1976318097","https://openalex.org/W1974588588","https://openalex.org/W1670628120","https://openalex.org/W1583261817"],"abstract_inverted_index":{"In":[0,26],"this":[1],"paper,":[2],"a":[3],"single":[4,70,81],"source":[5,23,71,82],"points":[6,32,76],"(SSPs)":[7],"detection":[8],"method":[9,113],"based":[10],"on":[11],"local":[12,44,56,63],"dominance":[13,57],"is":[14,50],"devised":[15],"for":[16],"mixing":[17,101],"matrix":[18,46,102],"estimation":[19],"in":[20,80,120],"underdetermined":[21],"blind":[22],"separation":[24],"(UBSS).":[25],"the":[27,43,55,59,74,89,95,111,123],"proposed":[28,112],"detector,":[29],"time-frequency":[30],"(TF)":[31],"of":[33,47,54,77],"mixed":[34,78],"signals":[35,79],"are":[36,66,84,92],"firstly":[37],"divided":[38],"into":[39],"different":[40],"groups,":[41,72],"and":[42,118],"covariance":[45,64],"each":[48],"group":[49],"calculated.":[51],"Taking":[52],"advantage":[53],"property,":[58],"groups":[60,83],"with":[61,105,122],"rank-one":[62],"matrices":[65],"then":[67],"identified":[68],"as":[69,86],"i.e.,":[73],"TF":[75],"regarded":[85],"SSPs.":[87],"Finally,":[88],"obtained":[90],"SSPs":[91],"clustered":[93],"by":[94],"hierarchical":[96],"clustering":[97],"algorithm":[98],"to":[99],"achieve":[100],"estimation.":[103],"Simulations":[104],"real":[106],"audio":[107],"sources":[108],"show":[109],"that":[110],"yields":[114],"competitive":[115],"robustness,":[116],"efficiency":[117],"effectiveness,":[119],"comparison":[121],"traditional":[124],"methods.":[125]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3190676332","counts_by_year":[],"updated_date":"2024-12-24T05:42:15.614160","created_date":"2021-08-16"}