{"id":"https://openalex.org/W2124704120","doi":"https://doi.org/10.1109/ivs.2012.6232281","title":"Illumination invariance for driving scene optical flow using comparagram preselection","display_name":"Illumination invariance for driving scene optical flow using comparagram preselection","publication_year":2012,"publication_date":"2012-06-01","ids":{"openalex":"https://openalex.org/W2124704120","doi":"https://doi.org/10.1109/ivs.2012.6232281","mag":"2124704120"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ivs.2012.6232281","pdf_url":null,"source":{"id":"https://openalex.org/S4306422571","display_name":"IEEE Intelligent Vehicles Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5089046601","display_name":"David Dederscheck","orcid":null},"institutions":[{"id":"https://openalex.org/I114090438","display_name":"Goethe University Frankfurt","ror":"https://ror.org/04cvxnb49","country_code":"DE","type":"funder","lineage":["https://openalex.org/I114090438"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"David Dederscheck","raw_affiliation_strings":["Visual Sensorics and Information Processing Laboratory, Goethe Universit\u00e4t Frankfurt, Frankfurt, Germany"],"affiliations":[{"raw_affiliation_string":"Visual Sensorics and Information Processing Laboratory, Goethe Universit\u00e4t Frankfurt, Frankfurt, Germany","institution_ids":["https://openalex.org/I114090438"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100661927","display_name":"Thomas M\u00fcller","orcid":"https://orcid.org/0000-0001-7577-755X"},"institutions":[{"id":"https://openalex.org/I891521709","display_name":"Daimler (Germany)","ror":"https://ror.org/00m0j3d84","country_code":"DE","type":"company","lineage":["https://openalex.org/I891521709"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Thomas Muller","raw_affiliation_strings":["Daimler Benz AeroSpace, Sindelfingen, Germany"],"affiliations":[{"raw_affiliation_string":"Daimler Benz AeroSpace, Sindelfingen, Germany","institution_ids":["https://openalex.org/I891521709"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5048393027","display_name":"Rudolf Mester","orcid":"https://orcid.org/0000-0002-6932-0606"},"institutions":[{"id":"https://openalex.org/I102134673","display_name":"Link\u00f6ping University","ror":"https://ror.org/05ynxx418","country_code":"SE","type":"funder","lineage":["https://openalex.org/I102134673"]},{"id":"https://openalex.org/I114090438","display_name":"Goethe University Frankfurt","ror":"https://ror.org/04cvxnb49","country_code":"DE","type":"funder","lineage":["https://openalex.org/I114090438"]}],"countries":["DE","SE"],"is_corresponding":false,"raw_author_name":"Rudolf Mester","raw_affiliation_strings":["Computer Vision Laboratory, Link\u00f6ping University, Linkoping, Sweden","Visual Sensorics and Information Processing Laboratory, Goethe Universit\u00e4t Frankfurt, Frankfurt, Germany"],"affiliations":[{"raw_affiliation_string":"Computer Vision Laboratory, Link\u00f6ping University, Linkoping, Sweden","institution_ids":["https://openalex.org/I102134673"]},{"raw_affiliation_string":"Visual Sensorics and Information Processing Laboratory, Goethe Universit\u00e4t Frankfurt, Frankfurt, Germany","institution_ids":["https://openalex.org/I114090438"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.989,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":6,"citation_normalized_percentile":{"value":0.581238,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"742","last_page":"747"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/optical-flow","display_name":"Optical Flow","score":0.73289305}],"concepts":[{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.7738762},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7603489},{"id":"https://openalex.org/C125245961","wikidata":"https://www.wikidata.org/wiki/Q221656","display_name":"Brightness","level":2,"score":0.74139637},{"id":"https://openalex.org/C155542232","wikidata":"https://www.wikidata.org/wiki/Q736111","display_name":"Optical flow","level":3,"score":0.73289305},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7314471},{"id":"https://openalex.org/C195065555","wikidata":"https://www.wikidata.org/wiki/Q214881","display_name":"Curvature","level":2,"score":0.5199186},{"id":"https://openalex.org/C2780023022","wikidata":"https://www.wikidata.org/wiki/Q1338171","display_name":"Compensation (psychology)","level":2,"score":0.46868852},{"id":"https://openalex.org/C128840427","wikidata":"https://www.wikidata.org/wiki/Q1302174","display_name":"Motion compensation","level":2,"score":0.42273363},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.3037544},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18455428},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.1250248},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.09994069},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C11171543","wikidata":"https://www.wikidata.org/wiki/Q41630","display_name":"Psychoanalysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ivs.2012.6232281","pdf_url":null,"source":{"id":"https://openalex.org/S4306422571","display_name":"IEEE Intelligent Vehicles Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1545352528","https://openalex.org/W1578985305","https://openalex.org/W1581294490","https://openalex.org/W1585312399","https://openalex.org/W1590329763","https://openalex.org/W1737503696","https://openalex.org/W2006924334","https://openalex.org/W2058230789","https://openalex.org/W2071499765","https://openalex.org/W2100983129","https://openalex.org/W2103559027","https://openalex.org/W2116751274","https://openalex.org/W2132817297","https://openalex.org/W2136270866","https://openalex.org/W2156875677","https://openalex.org/W2162603092","https://openalex.org/W2165406874","https://openalex.org/W61928934"],"related_works":["https://openalex.org/W4298119411","https://openalex.org/W4250745116","https://openalex.org/W3175896399","https://openalex.org/W2605640648","https://openalex.org/W2603625296","https://openalex.org/W2588661485","https://openalex.org/W2387055199","https://openalex.org/W2313061941","https://openalex.org/W2052546562","https://openalex.org/W1953485902"],"abstract_inverted_index":{"In":[0],"the":[1,15,34,48,67,72,95],"recent":[2],"years,":[3],"advanced":[4],"video":[5],"sensors":[6],"have":[7],"become":[8],"common":[9],"in":[10,56,94],"driver":[11],"assistance,":[12],"coping":[13],"with":[14,124],"highly":[16,31],"dynamic":[17],"lighting":[18],"conditions":[19],"by":[20,81],"nonlinear":[21],"exposure":[22],"adjustments.":[23],"However,":[24],"many":[25],"computer":[26],"vision":[27,76],"algorithms":[28],"are":[29],"still":[30],"sensitive":[32],"to":[33,46],"resulting":[35],"sudden":[36],"brightness":[37],"changes.":[38],"We":[39],"present":[40],"a":[41,57],"method":[42,87],"that":[43,109],"is":[44,101,105],"able":[45],"estimate":[47],"relative":[49],"intensity":[50,90],"transfer":[51],"function":[52],"(RITF)":[53],"between":[54],"images":[55,69,96],"sequence":[58],"even":[59],"for":[60],"moving":[61],"cameras.":[62],"The":[63,103],"according":[64],"compensation":[65,129],"of":[66,74],"input":[68],"can":[70],"improve":[71],"performance":[73],"further":[75],"tasks":[77],"significantly,":[78],"here":[79],"demonstrated":[80],"results":[82],"from":[83,92,108],"optical":[84],"flow.":[85],"Our":[86],"identifies":[88],"corresponding":[89],"values":[91],"areas":[93],"where":[97,127],"no":[98,128],"apparent":[99],"motion":[100],"present.":[102],"RITF":[104],"then":[106],"estimated":[107],"data":[110],"and":[111],"regularized":[112],"based":[113],"on":[114],"its":[115],"curvature.":[116],"Finally,":[117],"built-in":[118],"tests":[119],"reliably":[120],"flag":[121],"image":[122],"pairs":[123],"`adverse":[125],"conditions'":[126],"could":[130],"be":[131],"performed.":[132]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2124704120","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":1}],"updated_date":"2025-03-20T09:15:04.420752","created_date":"2016-06-24"}