{"id":"https://openalex.org/W1995129208","doi":"https://doi.org/10.1109/ivs.2010.5548007","title":"Multiple pedestrian tracking using Viterbi data association","display_name":"Multiple pedestrian tracking using Viterbi data association","publication_year":2010,"publication_date":"2010-06-01","ids":{"openalex":"https://openalex.org/W1995129208","doi":"https://doi.org/10.1109/ivs.2010.5548007","mag":"1995129208"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ivs.2010.5548007","pdf_url":null,"source":{"id":"https://openalex.org/S4306422571","display_name":"IEEE Intelligent Vehicles Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004252440","display_name":"Asma Azim","orcid":null},"institutions":[{"id":"https://openalex.org/I899635006","display_name":"Universit\u00e9 Grenoble Alpes","ror":"https://ror.org/02rx3b187","country_code":"FR","type":"funder","lineage":["https://openalex.org/I899635006"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Asma Azim","raw_affiliation_strings":["University of Grenoble1 & INRIA Rh\u00f4ne-Alpes, France"],"affiliations":[{"raw_affiliation_string":"University of Grenoble1 & INRIA Rh\u00f4ne-Alpes, France","institution_ids":["https://openalex.org/I899635006"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5075345238","display_name":"Olivier Aycard","orcid":null},"institutions":[{"id":"https://openalex.org/I899635006","display_name":"Universit\u00e9 Grenoble Alpes","ror":"https://ror.org/02rx3b187","country_code":"FR","type":"funder","lineage":["https://openalex.org/I899635006"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Olivier Aycard","raw_affiliation_strings":["University of Grenoble1 & INRIA Rh\u00f4ne-Alpes, France"],"affiliations":[{"raw_affiliation_string":"University of Grenoble1 & INRIA Rh\u00f4ne-Alpes, France","institution_ids":["https://openalex.org/I899635006"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.468,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":8,"citation_normalized_percentile":{"value":0.702463,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"706","last_page":"711"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9887,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/viterbi-algorithm","display_name":"Viterbi algorithm","score":0.75122243},{"id":"https://openalex.org/keywords/data-association","display_name":"Data association","score":0.637318},{"id":"https://openalex.org/keywords/tracking","display_name":"Tracking (education)","score":0.51221627},{"id":"https://openalex.org/keywords/association","display_name":"Association (psychology)","score":0.47800413},{"id":"https://openalex.org/keywords/false-alarm","display_name":"False alarm","score":0.44477037}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8131126},{"id":"https://openalex.org/C132094186","wikidata":"https://www.wikidata.org/wiki/Q641585","display_name":"Clutter","level":3,"score":0.76173604},{"id":"https://openalex.org/C60582962","wikidata":"https://www.wikidata.org/wiki/Q83886","display_name":"Viterbi algorithm","level":3,"score":0.75122243},{"id":"https://openalex.org/C2983325608","wikidata":"https://www.wikidata.org/wiki/Q17084606","display_name":"Data association","level":3,"score":0.637318},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6143791},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.58475477},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.5315801},{"id":"https://openalex.org/C2775936607","wikidata":"https://www.wikidata.org/wiki/Q466845","display_name":"Tracking (education)","level":2,"score":0.51221627},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.49749544},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.4833},{"id":"https://openalex.org/C142853389","wikidata":"https://www.wikidata.org/wiki/Q744778","display_name":"Association (psychology)","level":2,"score":0.47800413},{"id":"https://openalex.org/C202474056","wikidata":"https://www.wikidata.org/wiki/Q1931635","display_name":"Video tracking","level":3,"score":0.461149},{"id":"https://openalex.org/C2776836416","wikidata":"https://www.wikidata.org/wiki/Q1364844","display_name":"False alarm","level":2,"score":0.44477037},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.42819372},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.3353532},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.29296914},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.12876716},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.12757805},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.076630086},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C19417346","wikidata":"https://www.wikidata.org/wiki/Q7922","display_name":"Pedagogy","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ivs.2010.5548007","pdf_url":null,"source":{"id":"https://openalex.org/S4306422571","display_name":"IEEE Intelligent Vehicles Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.42,"id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1568122762","https://openalex.org/W2037286736","https://openalex.org/W2071650273","https://openalex.org/W2127923214","https://openalex.org/W2136760085","https://openalex.org/W2142384583","https://openalex.org/W2571050459","https://openalex.org/W3187867541"],"related_works":["https://openalex.org/W4297796009","https://openalex.org/W2386939465","https://openalex.org/W2374793293","https://openalex.org/W2172267623","https://openalex.org/W2139793004","https://openalex.org/W2101471576","https://openalex.org/W2097396029","https://openalex.org/W2016931531","https://openalex.org/W1843307665","https://openalex.org/W1513162701"],"abstract_inverted_index":{"To":[0],"address":[1],"perception":[2,91],"problems":[3],"we":[4,26,106,145],"must":[5],"be":[6,71],"able":[7],"to":[8,28,53,65,111,151],"track":[9],"dynamic":[10],"objects":[11,62,78,115,154],"of":[12,18,47,56,61,84,86,149],"the":[13,21,38,45,54,59,90,94,113,119],"environment.":[14,39],"An":[15],"important":[16],"issue":[17],"tracking":[19,116,155,167],"is":[20,42,63,125],"association":[22],"problem":[23,41],"in":[24,37,139,156],"which":[25],"have":[27],"associate":[29],"each":[30],"new":[31,109],"observation":[32],"with":[33,173],"one":[34,68],"existing":[35],"object":[36,69,95],"This":[40],"complex:":[43],"unfortunately,":[44],"number":[46,55,60],"observations":[48],"generally":[49],"does":[50],"not":[51],"correspond":[52],"objects.":[57],"Moreover,":[58,89],"difficult":[64],"estimate":[66],"since":[67],"might":[70,98],"temporarily":[72],"occluded":[73],"or":[74,81,93],"unobserved":[75],"simply":[76],"because":[77],"can":[79],"enter":[80],"go":[82],"out":[83],"ranges":[85],"vehicle":[87],"sensors.":[88],"sensors":[92],"detection":[96],"process":[97],"generate":[99],"false":[100],"alarm":[101],"measurements.":[102],"In":[103,142],"this":[104,143],"paper,":[105,144],"propose":[107],"a":[108],"solution":[110],"solve":[112,152],"multiple":[114,153,165],"problem,":[117],"using":[118],"Viterbi":[120],"algorithm":[121],"(VA)":[122],"[2].":[123],"It":[124],"an":[126,147],"established":[127],"optimisation":[128],"technique":[129],"for":[130],"discrete":[131],"Markovian":[132],"systems":[133],"that":[134],"has":[135],"been":[136],"extensively":[137],"used":[138],"speech":[140],"recognition.":[141],"present":[146],"extension":[148],"VA":[150],"clutter":[157],"environment":[158],"and":[159,168],"show":[160],"some":[161,170],"experimental":[162],"results":[163],"on":[164],"pedestrian":[166],"also":[169],"quantitative":[171],"comparisons":[172],"MHT":[174],"algorithms.":[175]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1995129208","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":3},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2025-04-19T18:51:08.295431","created_date":"2016-06-24"}