{"id":"https://openalex.org/W4308080108","doi":"https://doi.org/10.1109/itsc55140.2022.9922386","title":"A Short-term Traffic Flow Forecasting Model Based on Spatial-temporal Attention Neural Network","display_name":"A Short-term Traffic Flow Forecasting Model Based on Spatial-temporal Attention Neural Network","publication_year":2022,"publication_date":"2022-10-08","ids":{"openalex":"https://openalex.org/W4308080108","doi":"https://doi.org/10.1109/itsc55140.2022.9922386"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/itsc55140.2022.9922386","pdf_url":null,"source":{"id":"https://openalex.org/S4363607737","display_name":"2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100389344","display_name":"Honghui Dong","orcid":"https://orcid.org/0000-0001-6483-1426"},"institutions":[{"id":"https://openalex.org/I4210127216","display_name":"Ministry of Transport","ror":"https://ror.org/031wq1t38","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210127216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Honghui Dong","raw_affiliation_strings":["Key Laboratory of Technology on Intelligent Transportation Systems Ministry of Transport,Beijing,China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Technology on Intelligent Transportation Systems Ministry of Transport,Beijing,China","institution_ids":["https://openalex.org/I4210127216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050166453","display_name":"Pengcheng Zhu","orcid":"https://orcid.org/0000-0001-9867-7041"},"institutions":[{"id":"https://openalex.org/I4210127216","display_name":"Ministry of Transport","ror":"https://ror.org/031wq1t38","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210127216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Pengcheng Zhu","raw_affiliation_strings":["Key Laboratory of Technology on Intelligent Transportation Systems Ministry of Transport,Beijing,China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Technology on Intelligent Transportation Systems Ministry of Transport,Beijing,China","institution_ids":["https://openalex.org/I4210127216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030874012","display_name":"Jiayang Gao","orcid":"https://orcid.org/0000-0003-0650-2581"},"institutions":[{"id":"https://openalex.org/I4210127216","display_name":"Ministry of Transport","ror":"https://ror.org/031wq1t38","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210127216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiayang Gao","raw_affiliation_strings":["Key Laboratory of Technology on Intelligent Transportation Systems Ministry of Transport,Beijing,China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Technology on Intelligent Transportation Systems Ministry of Transport,Beijing,China","institution_ids":["https://openalex.org/I4210127216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100680032","display_name":"Limin Jia","orcid":"https://orcid.org/0000-0003-2161-4637"},"institutions":[{"id":"https://openalex.org/I4210127216","display_name":"Ministry of Transport","ror":"https://ror.org/031wq1t38","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210127216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Limin Jia","raw_affiliation_strings":["Key Laboratory of Technology on Intelligent Transportation Systems Ministry of Transport,Beijing,China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Technology on Intelligent Transportation Systems Ministry of Transport,Beijing,China","institution_ids":["https://openalex.org/I4210127216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5088716214","display_name":"Yong Qin","orcid":"https://orcid.org/0000-0002-6519-8316"},"institutions":[{"id":"https://openalex.org/I4210127216","display_name":"Ministry of Transport","ror":"https://ror.org/031wq1t38","country_code":"CN","type":"government","lineage":["https://openalex.org/I4210127216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yong Qin","raw_affiliation_strings":["Key Laboratory of Technology on Intelligent Transportation Systems Ministry of Transport,Beijing,China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Technology on Intelligent Transportation Systems Ministry of Transport,Beijing,China","institution_ids":["https://openalex.org/I4210127216"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.248,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.510151,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9804,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9765,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/traffic-flow","display_name":"Traffic Flow","score":0.597629},{"id":"https://openalex.org/keywords/spatio-temporal-data","display_name":"Spatio-Temporal Data","score":0.544902},{"id":"https://openalex.org/keywords/short-term-forecasting","display_name":"Short-Term Forecasting","score":0.537792},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor fusion","score":0.4538452},{"id":"https://openalex.org/keywords/temporal-database","display_name":"Temporal database","score":0.43309078}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7516159},{"id":"https://openalex.org/C207512268","wikidata":"https://www.wikidata.org/wiki/Q3074551","display_name":"Traffic flow (computer networking)","level":2,"score":0.4800209},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.4538452},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.45215368},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.4480397},{"id":"https://openalex.org/C159620131","wikidata":"https://www.wikidata.org/wiki/Q1938983","display_name":"Spatial analysis","level":2,"score":0.44277814},{"id":"https://openalex.org/C77277458","wikidata":"https://www.wikidata.org/wiki/Q1969246","display_name":"Temporal database","level":2,"score":0.43309078},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4228728},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40418863},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.12419638},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.11342308},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.09466654},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/itsc55140.2022.9922386","pdf_url":null,"source":{"id":"https://openalex.org/S4363607737","display_name":"2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.79,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W1924770834","https://openalex.org/W2064675550","https://openalex.org/W2133564696","https://openalex.org/W2157331557","https://openalex.org/W2510642588","https://openalex.org/W2941717697","https://openalex.org/W2963017945","https://openalex.org/W2963241951","https://openalex.org/W2963358464","https://openalex.org/W2964015378","https://openalex.org/W3103720336","https://openalex.org/W4254816979","https://openalex.org/W4294558607","https://openalex.org/W4297733535","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4250495829","https://openalex.org/W4210727352","https://openalex.org/W3148227991","https://openalex.org/W3001521712","https://openalex.org/W2967381224","https://openalex.org/W2380470746","https://openalex.org/W2347703430","https://openalex.org/W2134683619","https://openalex.org/W2060367935","https://openalex.org/W1486593826"],"abstract_inverted_index":{"In":[0],"recent":[1],"years,":[2],"with":[3,51],"the":[4,29,58,65,93,99,106,111,116,123,126,137,141,145,154,158,166],"enrichment":[5],"of":[6,31,38,53,67,98,140,148,153],"information":[7,120],"collection":[8],"methods,":[9],"traffic":[10,79],"flow":[11,36],"data":[12,37,74],"are":[13,41,133],"no":[14],"longer":[15],"limited":[16],"to":[17,56,91,109,114,135,162],"a":[18,22],"single":[19],"section":[20],"or":[21],"certain":[23],"region,":[24],"and":[25,76,81,96,118,129,143],"often":[26],"presented":[27],"in":[28,165],"form":[30],"large-scale":[32],"road":[33,39],"networks.":[34],"Traffic":[35],"networks":[40],"mainly":[42],"spatial-temporal":[43,68],"sequential":[44],"data.":[45],"This":[46],"paper":[47],"combines":[48],"graph":[49],"theory":[50],"prediction":[52,168],"temporal":[54,119,130],"sequences":[55],"propose":[57],"Spatial-temporal":[59],"Attention":[60,86],"Neural":[61],"Network":[62,87],"(STAtt)":[63],"from":[64],"perspective":[66],"feature":[69],"fusion,":[70],"aiming":[71],"at":[72],"providing":[73],"support":[75],"reference":[77],"for":[78],"guidance":[80],"path":[82],"planning.":[83],"The":[84,151],"Graph":[85],"(GAT)":[88],"is":[89,103,160],"used":[90,134],"describe":[92],"directivity,":[94],"difference":[95],"variability":[97],"roads'":[100],"interactions,":[101],"which":[102],"embedded":[104],"into":[105],"loop":[107],"unit":[108],"replace":[110],"gate":[112],"structure":[113],"achieve":[115],"spatial":[117],"fusion.":[121],"At":[122],"same":[124],"time,":[125],"Sequence-to-Sequence":[127],"architecture":[128],"attention":[131],"mechanism":[132],"enlarge":[136],"receptive":[138],"field":[139],"model":[142,159],"reduce":[144],"cumulative":[146],"error":[147],"multi-step":[149],"prediction.":[150],"results":[152],"experiment":[155],"show":[156],"that":[157],"superior":[161],"other":[163],"models":[164],"short-time":[167],"task":[169],"within":[170],"1":[171],"hour.":[172]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4308080108","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2024-12-05T09:27:19.313416","created_date":"2022-11-08"}