{"id":"https://openalex.org/W2990961728","doi":"https://doi.org/10.1109/itsc.2019.8917456","title":"Data-driven Models for Short-term Travel Time Predictio","display_name":"Data-driven Models for Short-term Travel Time Predictio","publication_year":2019,"publication_date":"2019-10-01","ids":{"openalex":"https://openalex.org/W2990961728","doi":"https://doi.org/10.1109/itsc.2019.8917456","mag":"2990961728"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/itsc.2019.8917456","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5038560747","display_name":"Aakash Kumar Narayanan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Aakash Kumar Narayanan","raw_affiliation_strings":["School of Electrical and Electronics Engineering"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronics Engineering","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047155128","display_name":"Chaitra Pranesh","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chaitra Pranesh","raw_affiliation_strings":["School of Electrical and Electronics Engineering"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronics Engineering","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018353075","display_name":"Sarat Chandra Nagavarapu","orcid":"https://orcid.org/0000-0001-7961-8257"},"institutions":[{"id":"https://openalex.org/I4210094970","display_name":"Energy Research Institute","ror":"https://ror.org/00ndnb620","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210094970","https://openalex.org/I4210142748"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Sarat Chandra Nagavarapu","raw_affiliation_strings":["Energy Research Institute, NTU"],"affiliations":[{"raw_affiliation_string":"Energy Research Institute, NTU","institution_ids":["https://openalex.org/I4210094970"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087605688","display_name":"B. Anil Kumar","orcid":"https://orcid.org/0000-0001-5933-8362"},"institutions":[{"id":"https://openalex.org/I132153292","display_name":"Indian Institute of Technology Patna","ror":"https://ror.org/01ft5vz71","country_code":"IN","type":"funder","lineage":["https://openalex.org/I132153292"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"B. Anil Kumar","raw_affiliation_strings":["Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Patna, India"],"affiliations":[{"raw_affiliation_string":"Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Patna, India","institution_ids":["https://openalex.org/I132153292"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082613025","display_name":"Justin Dauwels","orcid":"https://orcid.org/0000-0002-4390-1568"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Justin Dauwels","raw_affiliation_strings":["School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.323886,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":74},"biblio":{"volume":null,"issue":null,"first_page":"1941","last_page":"1946"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.997,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.42455202},{"id":"https://openalex.org/keywords/predictive-modelling","display_name":"Predictive modelling","score":0.41613078}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7661589},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.66160285},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.6131802},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.56003153},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.52951646},{"id":"https://openalex.org/C2779888511","wikidata":"https://www.wikidata.org/wiki/Q244156","display_name":"Traffic congestion","level":2,"score":0.51850545},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.49144804},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.4868297},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.47522548},{"id":"https://openalex.org/C18762648","wikidata":"https://www.wikidata.org/wiki/Q42213","display_name":"Work (physics)","level":2,"score":0.4717817},{"id":"https://openalex.org/C2985733770","wikidata":"https://www.wikidata.org/wiki/Q1233007","display_name":"Travel time","level":2,"score":0.44469547},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.42455202},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41676512},{"id":"https://openalex.org/C45804977","wikidata":"https://www.wikidata.org/wiki/Q7239673","display_name":"Predictive modelling","level":2,"score":0.41613078},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4024006},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.36174518},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33636898},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.24005967},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.13379255},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.13102365},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12463784},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/itsc.2019.8917456","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.8}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1512556346","https://openalex.org/W1521346304","https://openalex.org/W1587327795","https://openalex.org/W1595834580","https://openalex.org/W1608662774","https://openalex.org/W1947901939","https://openalex.org/W1989491491","https://openalex.org/W2028336648","https://openalex.org/W2036785686","https://openalex.org/W2041567331","https://openalex.org/W2062017159","https://openalex.org/W2064675550","https://openalex.org/W2077537883","https://openalex.org/W2095797625","https://openalex.org/W2131819535","https://openalex.org/W2137394815","https://openalex.org/W2152196380","https://openalex.org/W2153060484","https://openalex.org/W2579495707","https://openalex.org/W2605995093","https://openalex.org/W2670533104","https://openalex.org/W2765137096","https://openalex.org/W2787894218","https://openalex.org/W2793820729","https://openalex.org/W2807904376","https://openalex.org/W2890672150","https://openalex.org/W2911964244","https://openalex.org/W3103720336","https://openalex.org/W347760078","https://openalex.org/W3830626","https://openalex.org/W4231830607"],"related_works":["https://openalex.org/W4322727400","https://openalex.org/W4311106074","https://openalex.org/W4281986673","https://openalex.org/W4281616679","https://openalex.org/W4226246648","https://openalex.org/W4223564025","https://openalex.org/W3211546796","https://openalex.org/W3014300295","https://openalex.org/W2968586400","https://openalex.org/W2734587838"],"abstract_inverted_index":{"Smart":[0],"urban":[1,108],"mobility":[2],"is":[3,115,126,149],"one":[4],"of":[5,23,32,111,123,132],"the":[6,24,27,60,133,152,156],"key":[7],"components":[8],"to":[9,16,37,54,117,144,172],"build":[10],"future":[11],"cities.":[12],"From":[13],"traffic":[14,57],"congestion":[15],"increased":[17],"travel":[18,51,88,102],"times":[19],"and":[20,96,128,158],"pollution,":[21],"most":[22],"cities":[25],"around":[26],"world":[28],"are":[29,76],"losing":[30],"billions":[31],"money":[33],"every":[34],"year":[35],"due":[36],"inefficient":[38],"transportation":[39],"planning.":[40],"This":[41],"work":[42],"addresses":[43],"these":[44,124,146],"issues,":[45],"by":[46],"proving":[47],"solution":[48],"methodologies":[49],"for":[50,106],"time":[52,89,103],"prediction":[53,90,139,167],"achieve":[55],"efficient":[56],"management.":[58],"With":[59],"improvements":[61],"in":[62],"processing":[63],"power,":[64],"RAM,":[65],"data":[66,104],"storage,":[67],"etc.,":[68],"computationally":[69],"expensive":[70],"techniques":[71,125],"such":[72],"as":[73],"deep":[74],"learning":[75,136],"making":[77],"their":[78],"way":[79],"into":[80],"prediction.":[81],"In":[82],"this":[83],"paper,":[84],"we":[85],"present":[86],"two":[87],"techniques,":[91],"long":[92],"short-term":[93],"memory":[94],"(LSTM)":[95],"random":[97],"forest":[98],"(RF).":[99],"A":[100],"real-life":[101],"set":[105],"an":[107],"road":[109],"network":[110],"New":[112],"South":[113],"Wales":[114],"considered":[116],"perform":[118],"numerical":[119],"experiments.":[120],"The":[121],"performance":[122],"analyzed":[127],"compared":[129],"against":[130],"some":[131],"existing":[134],"supervised":[135],"techniques.":[137],"Various":[138],"horizons":[140],"have":[141],"been":[142],"investigated":[143],"validate":[145],"models.":[147],"It":[148],"evident":[150],"from":[151],"simulation":[153],"results":[154],"that":[155],"LSTM":[157],"RF":[159],"models":[160],"demonstrate":[161],"promising":[162],"predictions":[163],"with":[164],"very":[165],"low":[166],"errors,":[168],"varying":[169],"between":[170],"0.5%":[171],"6.8%.":[173]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2990961728","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2025-03-21T15:22:43.208552","created_date":"2019-12-05"}