{"id":"https://openalex.org/W2904311985","doi":"https://doi.org/10.1109/itsc.2018.8569461","title":"A Framework for Driver Emotion Recognition using Deep Learning and Grassmann Manifolds","display_name":"A Framework for Driver Emotion Recognition using Deep Learning and Grassmann Manifolds","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2904311985","doi":"https://doi.org/10.1109/itsc.2018.8569461","mag":"2904311985"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/itsc.2018.8569461","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5056245252","display_name":"Bindu Verma","orcid":"https://orcid.org/0000-0003-3534-3364"},"institutions":[{"id":"https://openalex.org/I152429107","display_name":"Jawaharlal Nehru University","ror":"https://ror.org/0567v8t28","country_code":"IN","type":"funder","lineage":["https://openalex.org/I152429107"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Bindu Verma","raw_affiliation_strings":["School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India"],"affiliations":[{"raw_affiliation_string":"School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India","institution_ids":["https://openalex.org/I152429107"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5030506227","display_name":"Ayesha Choudhary","orcid":"https://orcid.org/0000-0002-7544-4912"},"institutions":[{"id":"https://openalex.org/I152429107","display_name":"Jawaharlal Nehru University","ror":"https://ror.org/0567v8t28","country_code":"IN","type":"funder","lineage":["https://openalex.org/I152429107"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Ayesha Choudhary","raw_affiliation_strings":["School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India"],"affiliations":[{"raw_affiliation_string":"School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India","institution_ids":["https://openalex.org/I152429107"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.5,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":33,"citation_normalized_percentile":{"value":0.914007,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":"1421","last_page":"1426"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10667","display_name":"Emotion and Mood Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10667","display_name":"Emotion and Mood Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11707","display_name":"Gaze Tracking and Assistive Technology","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11373","display_name":"Sleep and Work-Related Fatigue","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/expression","display_name":"Expression (computer science)","score":0.5925052},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5697916},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.45650703}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7391596},{"id":"https://openalex.org/C195704467","wikidata":"https://www.wikidata.org/wiki/Q327968","display_name":"Facial expression","level":2,"score":0.73424554},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6446418},{"id":"https://openalex.org/C12362212","wikidata":"https://www.wikidata.org/wiki/Q728435","display_name":"Linear subspace","level":2,"score":0.6263206},{"id":"https://openalex.org/C90559484","wikidata":"https://www.wikidata.org/wiki/Q778379","display_name":"Expression (computer science)","level":2,"score":0.5925052},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5697916},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.5363826},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5266043},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.45650703},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.4416147},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4404888},{"id":"https://openalex.org/C2778738651","wikidata":"https://www.wikidata.org/wiki/Q16546687","display_name":"Novelty","level":2,"score":0.4301595},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.35313275},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.105620444},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C27206212","wikidata":"https://www.wikidata.org/wiki/Q34178","display_name":"Theology","level":1,"score":0.0},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/itsc.2018.8569461","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.63,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W2014185685","https://openalex.org/W2060451633","https://openalex.org/W2066986622","https://openalex.org/W2074476999","https://openalex.org/W2078671978","https://openalex.org/W2103943262","https://openalex.org/W2106115875","https://openalex.org/W2117866167","https://openalex.org/W2125011751","https://openalex.org/W2131274108","https://openalex.org/W2141359934","https://openalex.org/W2145310492","https://openalex.org/W2147490203","https://openalex.org/W2161634108","https://openalex.org/W2163605009","https://openalex.org/W2164598857","https://openalex.org/W2191045312","https://openalex.org/W2217426128","https://openalex.org/W2244142460","https://openalex.org/W2253728219","https://openalex.org/W2343897680","https://openalex.org/W2506506742","https://openalex.org/W2583574148","https://openalex.org/W2624419954","https://openalex.org/W2740887493","https://openalex.org/W4294379094"],"related_works":["https://openalex.org/W4288804799","https://openalex.org/W3126131230","https://openalex.org/W3032237421","https://openalex.org/W3011883280","https://openalex.org/W2401808953","https://openalex.org/W2390346111","https://openalex.org/W2381242807","https://openalex.org/W2369082698","https://openalex.org/W2347541121","https://openalex.org/W2080951048"],"abstract_inverted_index":{"In":[0,54],"this":[1],"paper,":[2],"we":[3,60,77,95],"propose":[4],"a":[5,125],"novel,":[6],"real-time,":[7],"camera":[8],"based":[9,151],"framework":[10,133,189],"for":[11,114],"determining":[12],"the":[13,37,44,52,62,66,71,81,103,106,119,156,161,170],"drivers":[14],"emotions":[15,25,39],"through":[16],"facial":[17,98],"expression":[18,75,99,168],"recognition.":[19],"Studies":[20],"have":[21],"established":[22],"that":[23,94,186],"driver's":[24,38,63,72],"play":[26],"an":[27,167],"important":[28],"role":[29],"in":[30,48,65,135,163],"driving":[31],"behavior.":[32],"Therefore,":[33],"continuous":[34],"monitoring":[35],"of":[36,131,139,166,169],"and":[40,69,92,117,146],"requisite":[41],"warning":[42],"to":[43,123,154],"driver":[45],"will":[46],"help":[47],"maintaining":[49],"safety":[50],"on":[51,97,182],"roads.":[53],"our":[55,132,187],"framework,":[56],"at":[57],"regular":[58],"intervals,":[59],"detect":[61],"face":[64,82],"current":[67],"frame":[68,116],"recognize":[70,155],"emotions.":[73],"For":[74],"recognition,":[76],"extract":[78,102],"features":[79,104],"from":[80,105,110],"image":[83],"using":[84,142],"two":[85,112,120],"standard":[86,183],"pre-trained":[87],"deep":[88],"neural":[89],"networks,":[90],"AlexNet":[91],"VGG16,":[93],"fine-tune":[96],"data.":[100],"We":[101],"fully":[107],"connected":[108],"layer":[109],"these":[111,143],"networks":[113],"each":[115,140],"concatenate":[118],"feature":[121,127,144],"vectors":[122,145],"form":[124],"single":[126],"vector.":[128],"The":[129,158],"novelty":[130],"lies":[134],"creating":[136],"distinct":[137],"subspaces":[138,159],"expression,":[141],"applying":[147],"Grassmann":[148],"graph":[149],"embedding":[150],"discriminant":[152],"analysis":[153],"expression.":[157],"accommodate":[160],"variations":[162],"multiple":[164,177],"instances":[165],"same":[171],"person":[172],"as":[173,175],"well":[174],"across":[176],"people.":[178],"Our":[179],"experimental":[180],"results":[181],"datasets":[184],"show":[185],"proposed":[188],"outperforms":[190],"state-of-the-art":[191],"methods.":[192]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2904311985","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":12},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":1}],"updated_date":"2025-04-08T14:54:10.979882","created_date":"2018-12-22"}