{"id":"https://openalex.org/W1973093593","doi":"https://doi.org/10.1109/itsc.2013.6728385","title":"Construction of a traffic sign detector based on voting type co-training","display_name":"Construction of a traffic sign detector based on voting type co-training","publication_year":2013,"publication_date":"2013-10-01","ids":{"openalex":"https://openalex.org/W1973093593","doi":"https://doi.org/10.1109/itsc.2013.6728385","mag":"1973093593"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/itsc.2013.6728385","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5112294274","display_name":"Yuji Kojima","orcid":null},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"funder","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yuji Kojima","raw_affiliation_strings":["Grad. School of Information Science, Nagoya University, Nagoya, Japan"],"affiliations":[{"raw_affiliation_string":"Grad. School of Information Science, Nagoya University, Nagoya, Japan","institution_ids":["https://openalex.org/I60134161"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054493960","display_name":"Daisuke Deguchi","orcid":"https://orcid.org/0000-0003-0603-8790"},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"funder","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Daisuke Deguchi","raw_affiliation_strings":["Inf. & Commun. Headquarters, Nagoya Univ., Nagoya, Japan"],"affiliations":[{"raw_affiliation_string":"Inf. & Commun. Headquarters, Nagoya Univ., Nagoya, Japan","institution_ids":["https://openalex.org/I60134161"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034941095","display_name":"Ichiro Ide","orcid":"https://orcid.org/0000-0003-3942-9296"},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"funder","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ichiro Ide","raw_affiliation_strings":["Grad. School of Information Science, Nagoya University, Nagoya, Japan"],"affiliations":[{"raw_affiliation_string":"Grad. School of Information Science, Nagoya University, Nagoya, Japan","institution_ids":["https://openalex.org/I60134161"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085309296","display_name":"Hiroshi Murase","orcid":"https://orcid.org/0000-0002-8103-9294"},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"funder","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Hiroshi Murase","raw_affiliation_strings":["Grad. School of Information Science, Nagoya University, Nagoya, Japan"],"affiliations":[{"raw_affiliation_string":"Grad. School of Information Science, Nagoya University, Nagoya, Japan","institution_ids":["https://openalex.org/I60134161"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":"1137","last_page":"1142"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/weighted-voting","display_name":"Weighted voting","score":0.5208843},{"id":"https://openalex.org/keywords/traffic-sign-recognition","display_name":"Traffic Sign Recognition","score":0.4343043}],"concepts":[{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.82417095},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7958435},{"id":"https://openalex.org/C139676723","wikidata":"https://www.wikidata.org/wiki/Q1193832","display_name":"Sign (mathematics)","level":2,"score":0.71384245},{"id":"https://openalex.org/C2983860417","wikidata":"https://www.wikidata.org/wiki/Q170285","display_name":"Traffic sign","level":3,"score":0.6683915},{"id":"https://openalex.org/C132778050","wikidata":"https://www.wikidata.org/wiki/Q2065430","display_name":"Weighted voting","level":4,"score":0.5208843},{"id":"https://openalex.org/C77618280","wikidata":"https://www.wikidata.org/wiki/Q1155772","display_name":"Scheme (mathematics)","level":2,"score":0.51952964},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.5136525},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.51180595},{"id":"https://openalex.org/C520049643","wikidata":"https://www.wikidata.org/wiki/Q189760","display_name":"Voting","level":3,"score":0.48032346},{"id":"https://openalex.org/C6528762","wikidata":"https://www.wikidata.org/wiki/Q1574298","display_name":"Traffic sign recognition","level":4,"score":0.4343043},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.42679304},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37375173},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.361135},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3434684},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.083554864},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/itsc.2013.6728385","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.47,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1489207701","https://openalex.org/W1825459403","https://openalex.org/W2024046085","https://openalex.org/W2048679005","https://openalex.org/W2049204464","https://openalex.org/W2067191022","https://openalex.org/W2087347434","https://openalex.org/W2101210369","https://openalex.org/W2127550692","https://openalex.org/W2136805707","https://openalex.org/W2140126736","https://openalex.org/W2150581781","https://openalex.org/W2400451322","https://openalex.org/W3097096317"],"related_works":["https://openalex.org/W4382897155","https://openalex.org/W4379231512","https://openalex.org/W4378699879","https://openalex.org/W4286647459","https://openalex.org/W4283820116","https://openalex.org/W3215426395","https://openalex.org/W3128164723","https://openalex.org/W2899819381","https://openalex.org/W2772251146","https://openalex.org/W2557202782"],"abstract_inverted_index":{"In":[0,90],"this":[1,91,95,113,132,144],"paper,":[2,92],"we":[3,93],"propose":[4],"a":[5,15,23,27,43,102,124,181],"method":[6,121,150,173],"to":[7,64],"construct":[8],"an":[9,38],"accurate":[10,39],"traffic":[11,46,103,139,152,164],"sign":[12,104,140,153,165],"detector":[13,105,179],"with":[14,106,180],"small":[16],"number":[17,29],"of":[18,30,73,101,112,118,131,138,162,177,184],"manual":[19],"interactions.":[20],"When":[21],"using":[22,87,143],"statistical":[24],"learning":[25,76],"approach,":[26],"huge":[28],"training":[31,81],"samples":[32,82,154],"should":[33],"be":[34],"prepared":[35],"for":[36,97,134],"constructing":[37],"detector.":[40,166],"However,":[41],"in":[42],"real":[44],"environment,":[45],"signs":[47],"have":[48],"various":[49],"appearances,":[50],"and":[51,62,84,128,156,158],"their":[52],"backgrounds":[53],"vary":[54],"widely,":[55],"too.":[56],"Therefore,":[57],"it":[58],"is":[59,71],"very":[60],"difficult":[61],"expensive":[63],"manually":[65],"collect":[66,80],"all":[67],"possible":[68],"views.":[69],"Co-training":[70],"one":[72],"the":[74,99,116,119,129,136,148,160,163,171,175,178],"semi-supervised":[75],"techniques,":[77],"that":[78,170],"can":[79],"efficiently":[83],"automatically":[85,155],"by":[86,122],"multiple":[88],"classifiers.":[89],"employ":[94],"approach":[96],"improving":[98,135],"accuracy":[100,137,176],"low":[107],"cost.":[108],"The":[109],"main":[110],"contributions":[111],"paper":[114],"are":[115],"extension":[117],"co-training":[120],"introducing":[123],"majority":[125],"voting":[126,145],"scheme,":[127],"introduction":[130],"framework":[133],"detection.":[141],"By":[142],"type":[146],"co-training,":[147],"proposed":[149,172],"gathers":[151],"accurately,":[157],"improves":[159],"performance":[161],"Experimental":[167],"results":[168],"showed":[169],"improved":[174],"maximum":[182],"F-measure":[183],"0.95":[185],"from":[186],"0.72.":[187]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1973093593","counts_by_year":[],"updated_date":"2025-01-27T05:48:45.748008","created_date":"2016-06-24"}