{"id":"https://openalex.org/W4312896218","doi":"https://doi.org/10.1109/itc50671.2022.00075","title":"Accurate Failure Rate Prediction Based on Gaussian Process Using WAT Data","display_name":"Accurate Failure Rate Prediction Based on Gaussian Process Using WAT Data","publication_year":2022,"publication_date":"2022-09-01","ids":{"openalex":"https://openalex.org/W4312896218","doi":"https://doi.org/10.1109/itc50671.2022.00075"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/itc50671.2022.00075","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014257791","display_name":"Makoto Eiki","orcid":null},"institutions":[{"id":"https://openalex.org/I75917431","display_name":"Nara Institute of Science and Technology","ror":"https://ror.org/05bhada84","country_code":"JP","type":"education","lineage":["https://openalex.org/I75917431"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Makoto Eiki","raw_affiliation_strings":["Nara Institute of Science and Technology, Ikoma, Japan","Sony Semiconductor Manufacturing Corporation,Nagasaki,Japan,854-0065"],"affiliations":[{"raw_affiliation_string":"Sony Semiconductor Manufacturing Corporation,Nagasaki,Japan,854-0065","institution_ids":[]},{"raw_affiliation_string":"Nara Institute of Science and Technology, Ikoma, Japan","institution_ids":["https://openalex.org/I75917431"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040687148","display_name":"Tomoki Nakamura","orcid":"https://orcid.org/0000-0001-9525-4086"},"institutions":[],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tomoki Nakamura","raw_affiliation_strings":["Sony Semiconductor Manufacturing Corporation,Nagasaki,Japan,854-0065"],"affiliations":[{"raw_affiliation_string":"Sony Semiconductor Manufacturing Corporation,Nagasaki,Japan,854-0065","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038491251","display_name":"Masuo Kajiyama","orcid":null},"institutions":[],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Masuo Kajiyama","raw_affiliation_strings":["Sony Semiconductor Manufacturing Corporation,Nagasaki,Japan,854-0065"],"affiliations":[{"raw_affiliation_string":"Sony Semiconductor Manufacturing Corporation,Nagasaki,Japan,854-0065","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020770318","display_name":"Michiko Inoue","orcid":null},"institutions":[{"id":"https://openalex.org/I75917431","display_name":"Nara Institute of Science and Technology","ror":"https://ror.org/05bhada84","country_code":"JP","type":"education","lineage":["https://openalex.org/I75917431"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Michiko Inoue","raw_affiliation_strings":["Nara Institute of Science and Technology,Ikoma,Japan,630-0192"],"affiliations":[{"raw_affiliation_string":"Nara Institute of Science and Technology,Ikoma,Japan,630-0192","institution_ids":["https://openalex.org/I75917431"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5074380332","display_name":"Michihiro Shintani","orcid":"https://orcid.org/0000-0002-1163-096X"},"institutions":[{"id":"https://openalex.org/I27429435","display_name":"Kyoto Institute of Technology","ror":"https://ror.org/00965ax52","country_code":"JP","type":"education","lineage":["https://openalex.org/I27429435"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Michihiro Shintani","raw_affiliation_strings":["Kyoto Institute of Technology,Kyoto,Japan,606-8585"],"affiliations":[{"raw_affiliation_string":"Kyoto Institute of Technology,Kyoto,Japan,606-8585","institution_ids":["https://openalex.org/I27429435"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":"573","last_page":"577"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14117","display_name":"Integrated Circuits and Semiconductor Failure Analysis","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/word-error-rate","display_name":"Word error rate","score":0.41464052}],"concepts":[{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.71617794},{"id":"https://openalex.org/C163164238","wikidata":"https://www.wikidata.org/wiki/Q2737027","display_name":"Failure rate","level":2,"score":0.7045146},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.6527264},{"id":"https://openalex.org/C160671074","wikidata":"https://www.wikidata.org/wiki/Q267131","display_name":"Wafer","level":2,"score":0.5520556},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5073411},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.50672036},{"id":"https://openalex.org/C7218915","wikidata":"https://www.wikidata.org/wiki/Q1054475","display_name":"Gaussian function","level":3,"score":0.43945485},{"id":"https://openalex.org/C16910744","wikidata":"https://www.wikidata.org/wiki/Q7705759","display_name":"Test data","level":2,"score":0.42766166},{"id":"https://openalex.org/C40969351","wikidata":"https://www.wikidata.org/wiki/Q3516228","display_name":"Word error rate","level":2,"score":0.41464052},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39265043},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3863555},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33627635},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.31558642},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.30921274},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.29316455},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18736288},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/itc50671.2022.00075","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W2032087312","https://openalex.org/W2139657321","https://openalex.org/W2167175161","https://openalex.org/W2544286079","https://openalex.org/W2810471131","https://openalex.org/W2913472186","https://openalex.org/W2914393402","https://openalex.org/W2914931491","https://openalex.org/W3217554639","https://openalex.org/W4211049957","https://openalex.org/W4237436715","https://openalex.org/W4250955649","https://openalex.org/W4254713093"],"related_works":["https://openalex.org/W4389611271","https://openalex.org/W4312290701","https://openalex.org/W4287180928","https://openalex.org/W4285219580","https://openalex.org/W3161938660","https://openalex.org/W2999533062","https://openalex.org/W2804516791","https://openalex.org/W2384408398","https://openalex.org/W2027072693","https://openalex.org/W1987190824"],"abstract_inverted_index":{"In":[0,31],"this":[1],"paper,":[2],"we":[3],"propose":[4],"a":[5,15,38,127],"novel":[6],"method":[7,84,116],"for":[8,55],"predicting":[9],"the":[10,24,28,32,42,47,51,61,70,79,86,94,98,102,114,119],"characteristic":[11],"failure":[12,87],"rate":[13,88],"from":[14,46],"small":[16],"amount":[17],"of":[18,27,50,64,89],"data":[19,75,111],"with":[20],"high":[21],"accuracy":[22],"using":[23,35,73,97,107],"posterior":[25,95],"distribution":[26,96],"Gaussian":[29,71,99],"process.":[30],"proposed":[33,83,115],"method,":[34],"multiple":[36],"lots,":[37],"local":[39,80],"pattern":[40],"on":[41,78,93],"wafers":[43],"is":[44,67],"estimated":[45],"measurement":[48],"results":[49],"target-probe":[52],"test":[53],"item":[54],"failure-rate":[56,59],"prediction.":[57],"For":[58],"prediction,":[60],"global":[62,103],"trend":[63,104],"each":[65,90],"wafer":[66],"predicted":[68],"by":[69,122],"process":[72,100],"WAT":[74],"and":[76],"superimposed":[77],"pattern.":[81],"The":[82],"derives":[85],"die":[91],"based":[92],"in":[101],"calculation.":[105],"Experiments":[106],"industrial":[108],"semiconductor":[109],"manufacturing":[110],"demonstrate":[112],"that":[113],"can":[117],"reduce":[118],"estimation":[120],"error":[121],"approximately":[123],"70%":[124],"compared":[125],"to":[126],"conventional":[128],"method.":[129]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312896218","counts_by_year":[],"updated_date":"2024-12-12T17:28:35.415215","created_date":"2023-01-05"}