{"id":"https://openalex.org/W4388212671","doi":"https://doi.org/10.1109/issre59848.2023.00068","title":"AFALog: A General Augmentation Framework for Log-based Anomaly Detection with Active Learning","display_name":"AFALog: A General Augmentation Framework for Log-based Anomaly Detection with Active Learning","publication_year":2023,"publication_date":"2023-10-09","ids":{"openalex":"https://openalex.org/W4388212671","doi":"https://doi.org/10.1109/issre59848.2023.00068"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/issre59848.2023.00068","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5043852808","display_name":"Chiming Duan","orcid":"https://orcid.org/0009-0008-4422-6323"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chiming Duan","raw_affiliation_strings":["School of Software and Microelectronics, Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Software and Microelectronics, Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065669986","display_name":"Tong Jia","orcid":"https://orcid.org/0000-0003-1424-798X"},"institutions":[{"id":"https://openalex.org/I4210100255","display_name":"Beijing Academy of Artificial Intelligence","ror":"https://ror.org/016a74861","country_code":"CN","type":"other","lineage":["https://openalex.org/I4210100255"]},{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tong Jia","raw_affiliation_strings":["Institute for Artificial Intelligence, Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institute for Artificial Intelligence, Peking University, Beijing, China","institution_ids":["https://openalex.org/I4210100255","https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055332880","display_name":"Huaqian Cai","orcid":null},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huaqian Cai","raw_affiliation_strings":["School of Computer Science, Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100414277","display_name":"Ying Li","orcid":"https://orcid.org/0000-0002-6278-2357"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ying Li","raw_affiliation_strings":["National Engineering Research Center for Software Engineering, Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Research Center for Software Engineering, Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101617703","display_name":"Gang Huang","orcid":"https://orcid.org/0000-0002-4686-3181"},"institutions":[{"id":"https://openalex.org/I4210100255","display_name":"Beijing Academy of Artificial Intelligence","ror":"https://ror.org/016a74861","country_code":"CN","type":"other","lineage":["https://openalex.org/I4210100255"]},{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gang Huang","raw_affiliation_strings":["Institute for Artificial Intelligence, Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institute for Artificial Intelligence, Peking University, Beijing, China","institution_ids":["https://openalex.org/I4210100255","https://openalex.org/I20231570"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":null,"issue":null,"first_page":"46","last_page":"56"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12127","display_name":"Software System Performance and Reliability","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12127","display_name":"Software System Performance and Reliability","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9896,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9859,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.5112195},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.45279914}],"concepts":[{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.81033564},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77675724},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.6689793},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58227813},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.57947826},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.5112195},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.4945843},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.45279914},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3865036},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.080212384},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/issre59848.2023.00068","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320337504","funder_display_name":"Research and Development","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W2172012155","https://openalex.org/W2508465325","https://openalex.org/W2574133496","https://openalex.org/W2754665629","https://openalex.org/W2756452435","https://openalex.org/W2767094836","https://openalex.org/W2767623047","https://openalex.org/W2807561401","https://openalex.org/W2899575464","https://openalex.org/W2903478803","https://openalex.org/W2911333381","https://openalex.org/W2914802228","https://openalex.org/W2947815220","https://openalex.org/W2951061410","https://openalex.org/W2951786554","https://openalex.org/W2965838158","https://openalex.org/W2970489881","https://openalex.org/W2979166895","https://openalex.org/W3013882983","https://openalex.org/W3034402928","https://openalex.org/W3046680179","https://openalex.org/W3089589468","https://openalex.org/W3095840026","https://openalex.org/W3097861059","https://openalex.org/W3099780882","https://openalex.org/W3127712067","https://openalex.org/W3173451065","https://openalex.org/W3180050267","https://openalex.org/W3185152627","https://openalex.org/W3187841728","https://openalex.org/W3205626500","https://openalex.org/W3213920537","https://openalex.org/W4205965165","https://openalex.org/W4211008139","https://openalex.org/W4214526822","https://openalex.org/W4225400661","https://openalex.org/W4225726141","https://openalex.org/W4226379252","https://openalex.org/W4244757210","https://openalex.org/W4255845613","https://openalex.org/W4290878423"],"related_works":["https://openalex.org/W4377864969","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W2972971679","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928"],"abstract_inverted_index":{"Log-based":[0],"anomaly":[1,20,47,82],"detection":[2,21,83],"is":[3],"becoming":[4],"more":[5,7],"and":[6,101,142,152],"important":[8],"for":[9,30],"maintaining":[10],"the":[11,51,71,119,165],"availability":[12],"of":[13,27,53,65,121,170],"modern":[14],"microservice":[15,159],"systems.":[16,39],"Existing":[17],"supervised/semi-supervised":[18],"log":[19],"models":[22,41,68,89,141],"require":[23],"a":[24,111,157],"large":[25],"amount":[26],"human-labeled":[28],"logs":[29],"training":[31,176],"which":[32],"are":[33,90],"hard":[34],"to":[35,69,124,130],"collect":[36],"in":[37,56],"real-world":[38,158],"Unsupervised":[40],"often":[42,75],"perform":[43],"poorly":[44],"without":[45],"explicit":[46],"labels.":[48],"To":[49,105],"improve":[50,143],"performance":[52],"unsupervised":[54,67,88,140],"models,":[55],"this":[57],"paper,":[58],"we":[59,109],"first":[60],"make":[61],"an":[62,168],"empirical":[63],"study":[64],"existing":[66,87,139],"tackle":[70],"reason":[72],"why":[73],"they":[74],"produce":[76],"unsatisfied":[77],"results.":[78],"We":[79],"find":[80],"that":[81,162],"results":[84],"produced":[85],"by":[86,93,167],"significantly":[91],"affected":[92],"two":[94,149],"key":[95],"problems":[96],"including":[97],"Not-Cover":[98],"(NC)":[99],"problem":[100],"Suspicious-Noise":[102],"(SN)":[103],"problem.":[104],"solve":[106],"these":[107],"problems,":[108],"propose":[110],"novel":[112],"augmentation":[113],"framework":[114],"called":[115],"AFALog.":[116],"AFALog":[117],"leverages":[118],"idea":[120],"active":[122],"learning":[123],"incorporate":[125],"human":[126],"knowledge":[127],"so":[128],"as":[129],"augment":[131],"data":[132],"quality.":[133],"It":[134],"can":[135],"support":[136],"almost":[137],"all":[138],"their":[144],"performance.":[145],"Our":[146],"experiments":[147],"on":[148],"open":[150],"datasets":[151],"one":[153],"dataset":[154],"collected":[155],"from":[156],"system":[160],"demonstrate":[161],"DALog":[163],"improves":[164],"F1-score":[166],"average":[169],"6.61%,":[171],"with":[172],"only":[173],"5.9%":[174],"labeled":[175],"data.":[177]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388212671","counts_by_year":[],"updated_date":"2024-12-12T13:56:34.166595","created_date":"2023-11-03"}