{"id":"https://openalex.org/W2784262531","doi":"https://doi.org/10.1109/ispacs.2017.8266556","title":"GPU-based depth estimation for light field images","display_name":"GPU-based depth estimation for light field images","publication_year":2017,"publication_date":"2017-11-01","ids":{"openalex":"https://openalex.org/W2784262531","doi":"https://doi.org/10.1109/ispacs.2017.8266556","mag":"2784262531"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ispacs.2017.8266556","pdf_url":null,"source":{"id":"https://openalex.org/S4363605678","display_name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009847820","display_name":"Yanwen Qin","orcid":null},"institutions":[{"id":"https://openalex.org/I3131625388","display_name":"University Town of Shenzhen","ror":"https://ror.org/05f5j6225","country_code":"CN","type":"education","lineage":["https://openalex.org/I3131625388"]},{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanwen Qin","raw_affiliation_strings":["Shenzhen Key Lab of Broadband Network and Multimedia, Tsinghua University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Shenzhen Key Lab of Broadband Network and Multimedia, Tsinghua University, Shenzhen, China","institution_ids":["https://openalex.org/I3131625388","https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023967844","display_name":"Xin Jin","orcid":"https://orcid.org/0000-0001-6655-3888"},"institutions":[{"id":"https://openalex.org/I3131625388","display_name":"University Town of Shenzhen","ror":"https://ror.org/05f5j6225","country_code":"CN","type":"education","lineage":["https://openalex.org/I3131625388"]},{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xin Jin","raw_affiliation_strings":["Shenzhen Key Lab of Broadband Network and Multimedia, Tsinghua University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Shenzhen Key Lab of Broadband Network and Multimedia, Tsinghua University, Shenzhen, China","institution_ids":["https://openalex.org/I3131625388","https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5080722708","display_name":"Qionghai Dai","orcid":"https://orcid.org/0000-0001-7043-3061"},"institutions":[{"id":"https://openalex.org/I3131625388","display_name":"University Town of Shenzhen","ror":"https://ror.org/05f5j6225","country_code":"CN","type":"education","lineage":["https://openalex.org/I3131625388"]},{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qionghai Dai","raw_affiliation_strings":["Shenzhen Key Lab of Broadband Network and Multimedia, Tsinghua University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Shenzhen Key Lab of Broadband Network and Multimedia, Tsinghua University, Shenzhen, China","institution_ids":["https://openalex.org/I3131625388","https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.3,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.455019,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10638","display_name":"Optical measurement and interference techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/light-field","display_name":"Light Field","score":0.5092808},{"id":"https://openalex.org/keywords/depth-map","display_name":"Depth map","score":0.47300416},{"id":"https://openalex.org/keywords/fuse","display_name":"Fuse (electrical)","score":0.41041955}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8042419},{"id":"https://openalex.org/C138101251","wikidata":"https://www.wikidata.org/wiki/Q213092","display_name":"Thread (computing)","level":2,"score":0.6538251},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.53812504},{"id":"https://openalex.org/C48983235","wikidata":"https://www.wikidata.org/wiki/Q593161","display_name":"Light field","level":2,"score":0.5092808},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4811529},{"id":"https://openalex.org/C141268832","wikidata":"https://www.wikidata.org/wiki/Q2940499","display_name":"Depth map","level":3,"score":0.47300416},{"id":"https://openalex.org/C141353440","wikidata":"https://www.wikidata.org/wiki/Q182221","display_name":"Fuse (electrical)","level":2,"score":0.41041955},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.17331645},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ispacs.2017.8266556","pdf_url":null,"source":{"id":"https://openalex.org/S4363605678","display_name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1585668122","https://openalex.org/W1807470476","https://openalex.org/W1914596733","https://openalex.org/W2106598426","https://openalex.org/W2128359381","https://openalex.org/W2149694199","https://openalex.org/W2200825767","https://openalex.org/W2346725554","https://openalex.org/W2408261615","https://openalex.org/W2430642417","https://openalex.org/W2611615658"],"related_works":["https://openalex.org/W4390144983","https://openalex.org/W4239268388","https://openalex.org/W4237547500","https://openalex.org/W3000097931","https://openalex.org/W2920889653","https://openalex.org/W2897769554","https://openalex.org/W2609243770","https://openalex.org/W2373192430","https://openalex.org/W2354322770","https://openalex.org/W1570848052"],"abstract_inverted_index":{"With":[0],"the":[1,20,28,81,92,101,116],"development":[2],"in":[3,46,63],"light":[4],"field":[5],"imaging,":[6],"some":[7],"depth":[8,24,51,60,87,121],"map":[9],"estimation":[10,29,52,88,122],"algorithms":[11],"have":[12],"been":[13],"proposed":[14,54,78,102],"for":[15,55],"plenoptic":[16,56],"cameras.":[17],"They":[18],"fuse":[19],"information":[21,61],"from":[22],"multiple":[23],"cues":[25],"to":[26,42,58,79,86,90,115,129],"improve":[27],"accuracy,":[30],"while":[31],"high":[32],"computational":[33],"complexity":[34],"is":[35,39,53,126],"also":[36],"introduced,":[37],"which":[38,125],"not":[40],"applicable":[41],"real-time":[43,130],"applications.":[44,131],"Thus,":[45],"this":[47],"paper,":[48],"a":[49,64],"GPU-based":[50],"images":[57],"obtain":[59],"accurately":[62],"very":[65,127],"short":[66],"time.":[67],"An":[68],"angular":[69],"patch-based":[70],"thread":[71,118],"allocation":[72],"and":[73,89],"depth-adaptive":[74],"data-loading":[75],"method":[76],"are":[77],"adapt":[80],"parallel":[82],"characteristics":[83],"of":[84,108,120],"GPU":[85,103],"reduce":[91],"data":[93],"transfer":[94],"bandwidth":[95],"efficiently.":[96],"Experimental":[97],"results":[98],"show":[99],"that":[100],"optimization":[104],"provides":[105],"an":[106],"average":[107],"more":[109],"than":[110],"2000":[111],"times":[112],"acceleration":[113],"relative":[114],"single":[117],"implementation":[119],"on":[123],"CPU,":[124],"beneficial":[128]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2784262531","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":3}],"updated_date":"2025-04-24T11:55:24.925751","created_date":"2018-01-26"}