{"id":"https://openalex.org/W3217587745","doi":"https://doi.org/10.1109/isncc52172.2021.9615806","title":"An Entropy-based Hybrid Mechanism for Large-Scale Wireless Network Traffic Prediction","display_name":"An Entropy-based Hybrid Mechanism for Large-Scale Wireless Network Traffic Prediction","publication_year":2021,"publication_date":"2021-10-31","ids":{"openalex":"https://openalex.org/W3217587745","doi":"https://doi.org/10.1109/isncc52172.2021.9615806","mag":"3217587745"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isncc52172.2021.9615806","pdf_url":null,"source":{"id":"https://openalex.org/S4363606822","display_name":"2022 International Symposium on Networks, Computers and Communications (ISNCC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101436400","display_name":"Guilherme Barbosa","orcid":"https://orcid.org/0000-0002-0290-7760"},"institutions":[{"id":"https://openalex.org/I161127581","display_name":"Universidade Federal Fluminense","ror":"https://ror.org/02rjhbb08","country_code":"BR","type":"education","lineage":["https://openalex.org/I161127581"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Guilherme N. N. Barbosa","raw_affiliation_strings":["LabGen/M\u00eddiaCom \u2013 PPGEET/TET/TCE, Universidade Federal Flumimense \u2013 UFF \u2013 Niter\u00f3i, Brazil"],"affiliations":[{"raw_affiliation_string":"LabGen/M\u00eddiaCom \u2013 PPGEET/TET/TCE, Universidade Federal Flumimense \u2013 UFF \u2013 Niter\u00f3i, Brazil","institution_ids":["https://openalex.org/I161127581"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025235658","display_name":"Martin Andreoni Lopez","orcid":"https://orcid.org/0000-0002-4170-4341"},"institutions":[{"id":"https://openalex.org/I4210087059","display_name":"Technology Innovation Institute","ror":"https://ror.org/001kv2y39","country_code":"AE","type":"facility","lineage":["https://openalex.org/I4210087059"]}],"countries":["AE"],"is_corresponding":false,"raw_author_name":"Martin Andreoni Lopez","raw_affiliation_strings":["Technology Innovation Institute (TII), Abu Dhabi, United Arab Emirates"],"affiliations":[{"raw_affiliation_string":"Technology Innovation Institute (TII), Abu Dhabi, United Arab Emirates","institution_ids":["https://openalex.org/I4210087059"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055579099","display_name":"Dianne S. V. Medeiros","orcid":"https://orcid.org/0000-0002-0361-5903"},"institutions":[{"id":"https://openalex.org/I161127581","display_name":"Universidade Federal Fluminense","ror":"https://ror.org/02rjhbb08","country_code":"BR","type":"education","lineage":["https://openalex.org/I161127581"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Dianne S. V. Medeiros","raw_affiliation_strings":["LabGen/M\u00eddiaCom \u2013 PPGEET/TET/TCE, Universidade Federal Flumimense \u2013 UFF \u2013 Niter\u00f3i, Brazil"],"affiliations":[{"raw_affiliation_string":"LabGen/M\u00eddiaCom \u2013 PPGEET/TET/TCE, Universidade Federal Flumimense \u2013 UFF \u2013 Niter\u00f3i, Brazil","institution_ids":["https://openalex.org/I161127581"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5076412136","display_name":"Diogo M. F. Mattos","orcid":"https://orcid.org/0000-0002-1279-7366"},"institutions":[{"id":"https://openalex.org/I161127581","display_name":"Universidade Federal Fluminense","ror":"https://ror.org/02rjhbb08","country_code":"BR","type":"education","lineage":["https://openalex.org/I161127581"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Diogo M. F. Mattos","raw_affiliation_strings":["LabGen/M\u00eddiaCom \u2013 PPGEET/TET/TCE, Universidade Federal Flumimense \u2013 UFF \u2013 Niter\u00f3i, Brazil"],"affiliations":[{"raw_affiliation_string":"LabGen/M\u00eddiaCom \u2013 PPGEET/TET/TCE, Universidade Federal Flumimense \u2013 UFF \u2013 Niter\u00f3i, Brazil","institution_ids":["https://openalex.org/I161127581"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.802,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.999391,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9844,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C24338571","wikidata":"https://www.wikidata.org/wiki/Q2566298","display_name":"Autoregressive integrated moving average","level":3,"score":0.8798827},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.701152},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.58817965},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.46378338},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.40308306},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40103155},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32382286},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isncc52172.2021.9615806","pdf_url":null,"source":{"id":"https://openalex.org/S4363606822","display_name":"2022 International Symposium on Networks, Computers and Communications (ISNCC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W2017524370","https://openalex.org/W2568561492","https://openalex.org/W2572939427","https://openalex.org/W2612472936","https://openalex.org/W2755588949","https://openalex.org/W2783245345","https://openalex.org/W2893388915","https://openalex.org/W2900749811","https://openalex.org/W2909877301","https://openalex.org/W2909976513","https://openalex.org/W2921941248","https://openalex.org/W2922298999","https://openalex.org/W2924028299","https://openalex.org/W2930115336","https://openalex.org/W2963148318","https://openalex.org/W3016558386","https://openalex.org/W3090907207","https://openalex.org/W3093581242"],"related_works":["https://openalex.org/W4386362517","https://openalex.org/W4313123484","https://openalex.org/W4312561791","https://openalex.org/W4312309719","https://openalex.org/W3175321409","https://openalex.org/W3115491726","https://openalex.org/W2980748541","https://openalex.org/W2974356760","https://openalex.org/W2389894046","https://openalex.org/W2215717369"],"abstract_inverted_index":{"The":[0,73],"rising":[1],"of":[2,5,13,55,131],"the":[3,10,17,53,56,76,128,136,162],"Internet":[4],"Things":[6],"(IoT)":[7],"applications":[8],"fosters":[9],"exponential":[11],"increase":[12],"smart":[14],"devices,":[15],"expanding":[16],"Internet's":[18],"attacking":[19],"surface.":[20],"Anomaly":[21],"prediction":[22,34,49,163],"mechanisms":[23],"are":[24],"mandatory":[25],"to":[26,67,120,143],"anticipate":[27],"security":[28],"threats.":[29],"Besides,":[30],"traffic":[31,58],"monitoring":[32],"and":[33,39,80,95,149],"models":[35,87],"deliver":[36],"more":[37,112],"resilient":[38],"efficient":[40],"network":[41,57],"services.":[42],"This":[43],"paper":[44],"proposes":[45],"a":[46,106,153],"lightweight":[47],"user-behavior":[48],"mechanism":[50,104],"based":[51],"on":[52],"decomposition":[54],"features'":[59],"entropy":[60,77,155],"through":[61],"Discrete":[62],"Wavelet":[63],"Transform":[64],"(DWT)":[65],"applied":[66],"network-flow":[68],"Shannon":[69],"Entropy's":[70],"time":[71,173],"series.":[72],"DWT":[74],"decomposes":[75],"into":[78],"linear":[79],"nonlinear":[81,132],"components.":[82],"We":[83,101],"compare":[84],"two":[85],"forecasting":[86],"using":[88],"Long":[89],"Short":[90],"Term":[91],"Memory":[92],"(LSTM)":[93],"Networks":[94],"Auto-Regressive":[96],"Integrated":[97],"Moving":[98],"Averages":[99],"(ARIMA).":[100],"evaluate":[102],"our":[103,150],"in":[105],"large-scale":[107],"academic":[108],"wireless":[109],"network,":[110],"with":[111],"than":[113,124,147,174],"500":[114],"access":[115],"points.":[116],"LSTM":[117,140,157],"performs":[118],"up":[119,142],"10":[121],"times":[122,145],"better":[123,146],"ARIMA":[125,160],"for":[126,169],"predicting":[127],"real":[129],"value":[130],"flow-source":[133],"entropy.":[134],"Considering":[135],"transport":[137],"protocol":[138],"entropy,":[139],"is":[141,166],"8":[144],"ARIMA,":[148],"results":[151],"show":[152],"high":[154],"value.":[156],"also":[158],"outperforms":[159],"concerning":[161],"time,":[164],"which":[165],"42%":[167],"lower":[168],"LSTM's":[170],"worst-case":[171],"training":[172,177],"ARIMA's":[175],"best-case":[176],"time.":[178]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3217587745","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":2}],"updated_date":"2024-12-31T13:05:49.937152","created_date":"2021-12-06"}