{"id":"https://openalex.org/W4205566239","doi":"https://doi.org/10.1109/ism52913.2021.00025","title":"Content-adaptive convolutional neural network post-processing filter","display_name":"Content-adaptive convolutional neural network post-processing filter","publication_year":2021,"publication_date":"2021-11-01","ids":{"openalex":"https://openalex.org/W4205566239","doi":"https://doi.org/10.1109/ism52913.2021.00025"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ism52913.2021.00025","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028677347","display_name":"Mar\u00eda Paz Diago Santamar\u00eda","orcid":"https://orcid.org/0000-0003-1946-0712"},"institutions":[{"id":"https://openalex.org/I166825849","display_name":"Tampere University","ror":"https://ror.org/033003e23","country_code":"FI","type":"funder","lineage":["https://openalex.org/I166825849"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Maria Santamaria","raw_affiliation_strings":["Tampere University, Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Tampere University, Tampere, Finland","institution_ids":["https://openalex.org/I166825849"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075613994","display_name":"Yat-Hong Lam","orcid":null},"institutions":[{"id":"https://openalex.org/I166825849","display_name":"Tampere University","ror":"https://ror.org/033003e23","country_code":"FI","type":"funder","lineage":["https://openalex.org/I166825849"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Yat-Hong Lam","raw_affiliation_strings":["Tampere University, Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Tampere University, Tampere, Finland","institution_ids":["https://openalex.org/I166825849"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049106121","display_name":"Francesco Cricri","orcid":"https://orcid.org/0000-0002-1521-420X"},"institutions":[{"id":"https://openalex.org/I2738502077","display_name":"Nokia (Finland)","ror":"https://ror.org/04pkc8m17","country_code":"FI","type":"funder","lineage":["https://openalex.org/I2738502077"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Francesco Cricri","raw_affiliation_strings":["Nokia Technologies, Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Nokia Technologies, Tampere, Finland","institution_ids":["https://openalex.org/I2738502077"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017900883","display_name":"Jani Lainema","orcid":null},"institutions":[{"id":"https://openalex.org/I2738502077","display_name":"Nokia (Finland)","ror":"https://ror.org/04pkc8m17","country_code":"FI","type":"funder","lineage":["https://openalex.org/I2738502077"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Jani Lainema","raw_affiliation_strings":["Nokia Technologies, Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Nokia Technologies, Tampere, Finland","institution_ids":["https://openalex.org/I2738502077"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038279606","display_name":"Ramin G. Youvalari","orcid":"https://orcid.org/0000-0001-7260-0599"},"institutions":[{"id":"https://openalex.org/I2738502077","display_name":"Nokia (Finland)","ror":"https://ror.org/04pkc8m17","country_code":"FI","type":"funder","lineage":["https://openalex.org/I2738502077"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Ramin G. Youvalari","raw_affiliation_strings":["Nokia Technologies, Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Nokia Technologies, Tampere, Finland","institution_ids":["https://openalex.org/I2738502077"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100671939","display_name":"Honglei Zhang","orcid":"https://orcid.org/0000-0002-8229-852X"},"institutions":[{"id":"https://openalex.org/I2738502077","display_name":"Nokia (Finland)","ror":"https://ror.org/04pkc8m17","country_code":"FI","type":"funder","lineage":["https://openalex.org/I2738502077"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Honglei Zhang","raw_affiliation_strings":["Nokia Technologies, Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Nokia Technologies, Tampere, Finland","institution_ids":["https://openalex.org/I2738502077"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044816664","display_name":"Miska M. Hannuksela","orcid":"https://orcid.org/0000-0003-3405-0850"},"institutions":[{"id":"https://openalex.org/I2738502077","display_name":"Nokia (Finland)","ror":"https://ror.org/04pkc8m17","country_code":"FI","type":"funder","lineage":["https://openalex.org/I2738502077"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Miska M. Hannuksela","raw_affiliation_strings":["Nokia Technologies, Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Nokia Technologies, Tampere, Finland","institution_ids":["https://openalex.org/I2738502077"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088180438","display_name":"Esa Rahtu","orcid":"https://orcid.org/0000-0001-8767-0864"},"institutions":[{"id":"https://openalex.org/I166825849","display_name":"Tampere University","ror":"https://ror.org/033003e23","country_code":"FI","type":"funder","lineage":["https://openalex.org/I166825849"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Esa Rahtu","raw_affiliation_strings":["Tampere University, Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Tampere University, Tampere, Finland","institution_ids":["https://openalex.org/I166825849"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5109534160","display_name":"Moncef Gaubbuj","orcid":null},"institutions":[{"id":"https://openalex.org/I166825849","display_name":"Tampere University","ror":"https://ror.org/033003e23","country_code":"FI","type":"funder","lineage":["https://openalex.org/I166825849"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Moncef Gaubbuj","raw_affiliation_strings":["Tampere University, Tampere, Finland"],"affiliations":[{"raw_affiliation_string":"Tampere University, Tampere, Finland","institution_ids":["https://openalex.org/I166825849"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.088,"has_fulltext":false,"cited_by_count":12,"citation_normalized_percentile":{"value":0.805794,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/neural-coding","display_name":"Neural coding","score":0.44711137}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82123864},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.76887894},{"id":"https://openalex.org/C179518139","wikidata":"https://www.wikidata.org/wiki/Q5140297","display_name":"Coding (social sciences)","level":2,"score":0.6281397},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.61239094},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.46445346},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.44929755},{"id":"https://openalex.org/C77637269","wikidata":"https://www.wikidata.org/wiki/Q7002051","display_name":"Neural coding","level":2,"score":0.44711137},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4413297},{"id":"https://openalex.org/C102248274","wikidata":"https://www.wikidata.org/wiki/Q168388","display_name":"Adaptive filter","level":2,"score":0.42465687},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41946054},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.41826016},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.2034283},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.06407356},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ism52913.2021.00025","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W2101700394","https://openalex.org/W2133665775","https://openalex.org/W2495845231","https://openalex.org/W2757828535","https://openalex.org/W2791152551","https://openalex.org/W2913664580","https://openalex.org/W2943861973","https://openalex.org/W2948593503","https://openalex.org/W2968397583","https://openalex.org/W2970872821","https://openalex.org/W3011797594","https://openalex.org/W3012126742","https://openalex.org/W3034782636","https://openalex.org/W3043029414","https://openalex.org/W3094954034","https://openalex.org/W3100087914","https://openalex.org/W3104772632","https://openalex.org/W3110286842","https://openalex.org/W3115538845","https://openalex.org/W3117485197","https://openalex.org/W3133810115","https://openalex.org/W3153323090","https://openalex.org/W3169876831","https://openalex.org/W3181576318","https://openalex.org/W3183982718","https://openalex.org/W3185293814","https://openalex.org/W3195470930","https://openalex.org/W3196358730"],"related_works":["https://openalex.org/W4321487865","https://openalex.org/W4313906399","https://openalex.org/W4312417841","https://openalex.org/W4293226380","https://openalex.org/W4239306820","https://openalex.org/W4210874298","https://openalex.org/W2947043951","https://openalex.org/W2811106690","https://openalex.org/W2318112981","https://openalex.org/W2065031478"],"abstract_inverted_index":{"Neural":[0,75],"Network":[1,76],"(NN)-based":[2],"coding":[3,11,30],"techniques":[4],"are":[5,26,45,59,117],"being":[6],"developed":[7],"for":[8],"hybrid":[9],"video":[10,50,98,105],"schemes,":[12],"such":[13],"as":[14],"the":[15,36,40,71,104,111,115,119,129,132,137,176],"Versatile":[16],"Video":[17,156],"Coding":[18,157],"(VVC)":[19],"standard.":[20],"In-loop":[21],"filters":[22,25],"and":[23,100],"postprocessing":[24],"two":[27,86],"types":[28],"of":[29,39,114,131,148],"tools":[31,44],"that":[32],"aim":[33],"to":[34,62,106],"improve":[35],"visual":[37],"quality":[38],"reconstructed":[41],"content.":[42],"These":[43],"usually":[46],"trained":[47],"on":[48,95,103,136,146],"large":[49],"or":[51],"image":[52],"datasets":[53],"with":[54,70,154],"varying":[55],"content,":[56],"but":[57],"they":[58],"rarely":[60],"adaptive":[61],"different":[63],"content":[64],"types.":[65],"This":[66],"problem":[67],"is":[68,83,93,122,144],"addressed":[69],"proposed":[72,81],"content-adaptive":[73,84],"Convolutional":[74],"(CNN)":[77],"post-processing":[78,134,142],"filter.":[79],"The":[80,140],"approach":[82],"in":[85,175],"ways.":[87],"Firstly,":[88],"a":[89,96,125],"relatively":[90],"simple":[91],"CNN":[92,116,133,141],"pre-trained":[94],"general":[97],"dataset":[99],"then":[101],"fine-tuned":[102],"be":[107],"coded.":[108],"Since":[109],"only":[110],"bias":[112],"terms":[113],"fine-tuned,":[118],"signalling":[120],"overhead":[121],"reduced.":[123],"Secondly,":[124],"scaling":[126],"factor":[127],"indicates":[128],"influence":[130],"filter":[135,143],"final":[138],"reconstruction.":[139],"evaluated":[145],"top":[147],"VVC":[149],"Test":[150],"Model":[151],"(VTM)":[152],"11.0":[153],"NN-based":[155],"(NNVC)":[158],"1.0":[159],"and,":[160],"overall,":[161],"it":[162],"can":[163],"save":[164],"2.37%":[165],"(Y),":[166],"3.63%":[167],"(U),":[168],"2.24%":[169],"(V)":[170],"Bj\u00f8ntegaard":[171],"Delta":[172],"rate":[173],"(BD-rate)":[174],"Random":[177],"Access":[178],"(RA)":[179],"configuration.":[180]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4205566239","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":4}],"updated_date":"2025-04-22T09:59:43.564634","created_date":"2022-01-26"}