{"id":"https://openalex.org/W3057148036","doi":"https://doi.org/10.1109/iske47853.2019.9170415","title":"RFMC: A Rough Fuzzy Multi-view Clustering Approach","display_name":"RFMC: A Rough Fuzzy Multi-view Clustering Approach","publication_year":2019,"publication_date":"2019-11-01","ids":{"openalex":"https://openalex.org/W3057148036","doi":"https://doi.org/10.1109/iske47853.2019.9170415","mag":"3057148036"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iske47853.2019.9170415","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079102774","display_name":"Jie Hu","orcid":"https://orcid.org/0000-0002-0587-380X"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"education","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jie Hu","raw_affiliation_strings":["School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070559820","display_name":"Tianrui Li","orcid":"https://orcid.org/0000-0001-7780-104X"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"education","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tianrui Li","raw_affiliation_strings":["School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068951317","display_name":"Yan Yang","orcid":"https://orcid.org/0000-0002-6134-6094"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"education","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yan Yang","raw_affiliation_strings":["School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101541956","display_name":"Peng Xie","orcid":"https://orcid.org/0000-0003-2218-6662"},"institutions":[{"id":"https://openalex.org/I4800084","display_name":"Southwest Jiaotong University","ror":"https://ror.org/00hn7w693","country_code":"CN","type":"education","lineage":["https://openalex.org/I4800084"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peng Xie","raw_affiliation_strings":["School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China","institution_ids":["https://openalex.org/I4800084"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5043548203","display_name":"Xueli Xiao","orcid":"https://orcid.org/0000-0002-5610-2917"},"institutions":[{"id":"https://openalex.org/I181565077","display_name":"Georgia State University","ror":"https://ror.org/03qt6ba18","country_code":"US","type":"education","lineage":["https://openalex.org/I181565077"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xueli Xiao","raw_affiliation_strings":["Department of Computer Science, Georgia State University, Atlanta, GA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Georgia State University, Atlanta, GA, USA","institution_ids":["https://openalex.org/I181565077"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":"80","issue":null,"first_page":"142","last_page":"147"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9906,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9896,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.57078093},{"id":"https://openalex.org/keywords/centroid","display_name":"Centroid","score":0.5679806}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.7681105},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70676255},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.6845491},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.57078093},{"id":"https://openalex.org/C146599234","wikidata":"https://www.wikidata.org/wiki/Q511093","display_name":"Centroid","level":2,"score":0.5679806},{"id":"https://openalex.org/C17212007","wikidata":"https://www.wikidata.org/wiki/Q5511111","display_name":"Fuzzy clustering","level":3,"score":0.5674151},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.52788174},{"id":"https://openalex.org/C42011625","wikidata":"https://www.wikidata.org/wiki/Q1055058","display_name":"Fuzzy set","level":3,"score":0.49874353},{"id":"https://openalex.org/C111012933","wikidata":"https://www.wikidata.org/wiki/Q3137210","display_name":"Rough set","level":2,"score":0.4435696},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41129977},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34631568},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iske47853.2019.9170415","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1041128124","https://openalex.org/W1502792772","https://openalex.org/W1907775068","https://openalex.org/W1972381050","https://openalex.org/W1995450389","https://openalex.org/W2004524042","https://openalex.org/W2084812512","https://openalex.org/W2103535650","https://openalex.org/W2108154570","https://openalex.org/W2110624364","https://openalex.org/W2141429283","https://openalex.org/W2176433868","https://openalex.org/W2210977594","https://openalex.org/W2397015893","https://openalex.org/W2512771241","https://openalex.org/W2560337618","https://openalex.org/W2586686153","https://openalex.org/W2592398550","https://openalex.org/W2773315105","https://openalex.org/W2790896944","https://openalex.org/W2792234535","https://openalex.org/W2806445482","https://openalex.org/W2808465901","https://openalex.org/W2898440737","https://openalex.org/W2899604627","https://openalex.org/W2900980272","https://openalex.org/W2964070360","https://openalex.org/W3125740749"],"related_works":["https://openalex.org/W4390066334","https://openalex.org/W2978519593","https://openalex.org/W2392963705","https://openalex.org/W2382278777","https://openalex.org/W2381926679","https://openalex.org/W2378211422","https://openalex.org/W2353240132","https://openalex.org/W2107349454","https://openalex.org/W2102746356","https://openalex.org/W1964260090"],"abstract_inverted_index":{"Nowadays,":[0],"multi-view":[1,36,110,133],"dataset":[2,26],"have":[3,40,82,88],"become":[4],"ubiquitous":[5],"along":[6],"with":[7],"more":[8,10],"and":[9,68,120,125],"data":[11,76,103],"are":[12,27,58,70],"gathered":[13],"from":[14],"different":[15,169,184],"measuring":[16],"technologies":[17],"or":[18,90],"various":[19,23,172],"sources,":[20],"in":[21,50,77],"which":[22],"aspects":[24],"of":[25,35,54,74,123,159,171],"formalized":[28],"as":[29],"multiple":[30],"views.":[31,173],"Although":[32],"a":[33,62,106,131],"variety":[34],"clustering":[37,111,134,220],"analysis":[38,121],"approaches":[39],"been":[41],"put":[42],"forward":[43],"to":[44,94,136,153,166,182,195,217],"uncover":[45],"the":[46,51,64,75,97,115,138,156,168,197],"cluster":[47,85,99,140,147],"structure":[48,100],"hidden":[49],"data,":[52],"most":[53,73],"these":[55],"existing":[56],"methods":[57],"based":[59,146],"on":[60,204],"such":[61],"hypothesis:":[63],"relationship":[65],"between":[66],"objects":[67],"clusters":[69],"definite.":[71],"However,":[72],"our":[78,211],"real":[79],"life":[80],"may":[81],"no":[83],"clear":[84],"boundaries":[86],"but":[87],"indistinct":[89],"overlapping":[91],"boundaries.":[92],"How":[93],"effectively":[95],"reveal":[96],"uncertain":[98,117,139,157],"under":[101],"multiview":[102],"is":[104,151,164,180,193,214],"still":[105],"big":[107],"challenge":[108],"for":[109],"analysis.":[112],"Inspired":[113],"by":[114],"powerful":[116],"information":[118],"modeling":[119],"capabilities":[122],"rough":[124,143,199],"fuzzy":[126,200],"sets,":[127],"this":[128],"paper":[129],"proposes":[130],"new":[132],"method":[135,213],"discover":[137],"information.":[141,186],"A":[142,161,174],"set":[144],"concept":[145],"centroid":[148],"updating":[149],"strategy":[150],"designed":[152],"efficiently":[154],"describe":[155],"construction":[158],"clusters.":[160],"view":[162,185],"weight":[163],"introduced":[165],"capture":[167],"importance":[170],"fuzzy-based":[175],"iterative":[176,190],"optimization":[177,191],"objective":[178,201],"function":[179],"developed":[181],"fuse":[183],"Finally,":[187],"an":[188],"efficient":[189],"algorithm":[192],"devised":[194],"solve":[196],"proposed":[198,212],"function.":[202],"Experiments":[203],"widely":[205],"used":[206],"benchmark":[207],"datasets":[208],"prove":[209],"that":[210],"always":[215],"superior":[216],"several":[218],"latest":[219],"approaches.":[221]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3057148036","counts_by_year":[],"updated_date":"2024-12-06T03:48:46.265354","created_date":"2020-08-24"}