{"id":"https://openalex.org/W4386071940","doi":"https://doi.org/10.1109/isit54713.2023.10206678","title":"Semantic Communication of Learnable Concepts","display_name":"Semantic Communication of Learnable Concepts","publication_year":2023,"publication_date":"2023-06-25","ids":{"openalex":"https://openalex.org/W4386071940","doi":"https://doi.org/10.1109/isit54713.2023.10206678"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isit54713.2023.10206678","pdf_url":null,"source":{"id":"https://openalex.org/S4363604560","display_name":"2022 IEEE International Symposium on Information Theory (ISIT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2305.08126","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041941653","display_name":"Francesco Pase","orcid":"https://orcid.org/0000-0003-0116-8852"},"institutions":[{"id":"https://openalex.org/I138689650","display_name":"University of Padua","ror":"https://ror.org/00240q980","country_code":"IT","type":"education","lineage":["https://openalex.org/I138689650"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Francesco Pase","raw_affiliation_strings":["University of Padova, Italy"],"affiliations":[{"raw_affiliation_string":"University of Padova, Italy","institution_ids":["https://openalex.org/I138689650"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063075262","display_name":"Szymon Kobus","orcid":"https://orcid.org/0000-0002-1106-3918"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Szymon Kobus","raw_affiliation_strings":["Imperial College London, London, UK"],"affiliations":[{"raw_affiliation_string":"Imperial College London, London, UK","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016883501","display_name":"Deniz G\u00fcnd\u00fcz","orcid":"https://orcid.org/0000-0002-7725-395X"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Deniz G\u00fcnd\u00fcz","raw_affiliation_strings":["Imperial College London, London, UK"],"affiliations":[{"raw_affiliation_string":"Imperial College London, London, UK","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005894115","display_name":"Michele Zorzi","orcid":"https://orcid.org/0000-0003-2870-4678"},"institutions":[{"id":"https://openalex.org/I138689650","display_name":"University of Padua","ror":"https://ror.org/00240q980","country_code":"IT","type":"education","lineage":["https://openalex.org/I138689650"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Michele Zorzi","raw_affiliation_strings":["University of Padova, Italy"],"affiliations":[{"raw_affiliation_string":"University of Padova, Italy","institution_ids":["https://openalex.org/I138689650"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.876,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.633114,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"731","last_page":"736"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12879","display_name":"Distributed Sensor Networks and Detection Algorithms","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12879","display_name":"Distributed Sensor Networks and Detection Algorithms","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11321","display_name":"Error Correcting Code Techniques","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/distortion","display_name":"Distortion (music)","score":0.49828935},{"id":"https://openalex.org/keywords/semantic-space","display_name":"Semantic space","score":0.4827575},{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.47007707}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7777377},{"id":"https://openalex.org/C47798520","wikidata":"https://www.wikidata.org/wiki/Q190157","display_name":"Transmitter","level":3,"score":0.63194907},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.59556055},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.5350612},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.51738346},{"id":"https://openalex.org/C126780896","wikidata":"https://www.wikidata.org/wiki/Q899871","display_name":"Distortion (music)","level":4,"score":0.49828935},{"id":"https://openalex.org/C2986420190","wikidata":"https://www.wikidata.org/wiki/Q39045939","display_name":"Semantic space","level":2,"score":0.4827575},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.47943658},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.47007707},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44001052},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37274712},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34311044},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3215925},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.101456285},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C194257627","wikidata":"https://www.wikidata.org/wiki/Q211554","display_name":"Amplifier","level":3,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C2776257435","wikidata":"https://www.wikidata.org/wiki/Q1576430","display_name":"Bandwidth (computing)","level":2,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isit54713.2023.10206678","pdf_url":null,"source":{"id":"https://openalex.org/S4363604560","display_name":"2022 IEEE International Symposium on Information Theory (ISIT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.08126","pdf_url":"https://arxiv.org/pdf/2305.08126","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.08126","pdf_url":"https://arxiv.org/pdf/2305.08126","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W135467536","https://openalex.org/W1589803317","https://openalex.org/W2111874892","https://openalex.org/W2127414816","https://openalex.org/W2136433677","https://openalex.org/W2293830652","https://openalex.org/W2605800822","https://openalex.org/W2886523564","https://openalex.org/W2913668833","https://openalex.org/W2914304175","https://openalex.org/W3120793360","https://openalex.org/W3165283727","https://openalex.org/W4312931298","https://openalex.org/W4313455370"],"related_works":["https://openalex.org/W4380372336","https://openalex.org/W2982399888","https://openalex.org/W2947628004","https://openalex.org/W2935229758","https://openalex.org/W2594116857","https://openalex.org/W2502435347","https://openalex.org/W2359134391","https://openalex.org/W2355663289","https://openalex.org/W2354248671","https://openalex.org/W2106913410"],"abstract_inverted_index":{"We":[0,143],"consider":[1],"the":[2,24,36,43,62,68,77,90,94,99,117,133,149],"problem":[3,119],"of":[4,8,53,120,135],"communicating":[5,121],"a":[6,32,47,51,81,85,141,146],"sequence":[7],"concepts,":[9,122],"i.e.,":[10,23,55],"unknown":[11],"and":[12,39,65,123,137],"potentially":[13,67],"stochastic":[14],"maps,":[15],"which":[16,58],"can":[17,59,97],"be":[18],"observed":[19,63],"only":[20],"through":[21,84],"examples,":[22,38],"mapping":[25],"rules":[26],"are":[27],"unknown.":[28],"The":[29,71],"transmitter":[30,72],"applies":[31],"learning":[33],"algorithm":[34],"to":[35,75,80,88,92],"available":[37],"extracts":[40],"knowledge":[41],"from":[42],"data":[44],"by":[45],"optimizing":[46],"probability":[48],"distribution":[49],"over":[50],"set":[52],"models,":[54],"known":[56],"functions,":[57],"better":[60],"describe":[61,98],"data,":[64],"so":[66],"underlying":[69,100],"concepts.":[70],"then":[73],"needs":[74],"communicate":[76],"learned":[78],"models":[79,95],"remote":[82],"receiver":[83,91],"rate-limited":[86],"channel,":[87],"allow":[89],"decode":[93],"that":[96],"sampled":[101],"concepts":[102,134],"as":[103,105],"accurately":[104],"possible":[106],"in":[107,140],"their":[108],"semantic":[109],"space.":[110],"After":[111],"motivating":[112],"our":[113],"analysis,":[114],"we":[115],"propose":[116],"formal":[118],"provide":[124,145],"its":[125,130],"rate-distortion":[126],"characterization,":[127],"pointing":[128],"out":[129],"connection":[131],"with":[132],"empirical":[136],"strong":[138],"coordination":[139],"network.":[142],"also":[144],"bound":[147],"for":[148],"distortion-rate":[150],"function.":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386071940","counts_by_year":[{"year":2024,"cited_by_count":3}],"updated_date":"2025-01-04T22:32:14.990009","created_date":"2023-08-23"}