{"id":"https://openalex.org/W2963272769","doi":"https://doi.org/10.1109/isit.2018.8437472","title":"Information Geometric Approach to Bayesian Lower Error Bounds","display_name":"Information Geometric Approach to Bayesian Lower Error Bounds","publication_year":2018,"publication_date":"2018-06-01","ids":{"openalex":"https://openalex.org/W2963272769","doi":"https://doi.org/10.1109/isit.2018.8437472","mag":"2963272769"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isit.2018.8437472","pdf_url":null,"source":{"id":"https://openalex.org/S4363604560","display_name":"2022 IEEE International Symposium on Information Theory (ISIT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1801.04658","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101878749","display_name":"M. Ashok Kumar","orcid":null},"institutions":[{"id":"https://openalex.org/I64295750","display_name":"Indian Institute of Technology Indore","ror":"https://ror.org/01hhf7w52","country_code":"IN","type":"funder","lineage":["https://openalex.org/I64295750"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"M. Ashok Kumar","raw_affiliation_strings":["Discipline of Mathematics, Indian Institute of Technology, Indore, Madhya Pradesh, India"],"affiliations":[{"raw_affiliation_string":"Discipline of Mathematics, Indian Institute of Technology, Indore, Madhya Pradesh, India","institution_ids":["https://openalex.org/I64295750"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082119521","display_name":"Kumar Vijay Mishra","orcid":"https://orcid.org/0000-0002-5386-609X"},"institutions":[{"id":"https://openalex.org/I126307644","display_name":"University of Iowa","ror":"https://ror.org/036jqmy94","country_code":"US","type":"funder","lineage":["https://openalex.org/I126307644"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kumar Vijay Mishra","raw_affiliation_strings":["IIHR - Hydroscience & Engineering, The University of Iowa, Iowa City, IA, USA"],"affiliations":[{"raw_affiliation_string":"IIHR - Hydroscience & Engineering, The University of Iowa, Iowa City, IA, USA","institution_ids":["https://openalex.org/I126307644"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.621,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":13,"citation_normalized_percentile":{"value":0.837302,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"746","last_page":"750"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12261","display_name":"Statistical Mechanics and Entropy","score":0.999,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12261","display_name":"Statistical Mechanics and Entropy","score":0.999,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cram\u00e9r\u2013rao-bound","display_name":"Cram\u00e9r\u2013Rao bound","score":0.7907442},{"id":"https://openalex.org/keywords/fisher-information","display_name":"Fisher information","score":0.6488708},{"id":"https://openalex.org/keywords/statistical-manifold","display_name":"Statistical manifold","score":0.5482765},{"id":"https://openalex.org/keywords/riemannian-geometry","display_name":"Riemannian Geometry","score":0.48255533},{"id":"https://openalex.org/keywords/chernoff-bound","display_name":"Chernoff bound","score":0.46031472}],"concepts":[{"id":"https://openalex.org/C109546454","wikidata":"https://www.wikidata.org/wiki/Q3798604","display_name":"Information geometry","level":4,"score":0.8621863},{"id":"https://openalex.org/C4978587","wikidata":"https://www.wikidata.org/wiki/Q1138810","display_name":"Cram\u00e9r\u2013Rao bound","level":3,"score":0.7907442},{"id":"https://openalex.org/C77553402","wikidata":"https://www.wikidata.org/wiki/Q13222579","display_name":"Upper and lower bounds","level":2,"score":0.70933187},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.66544664},{"id":"https://openalex.org/C29406490","wikidata":"https://www.wikidata.org/wiki/Q1420659","display_name":"Fisher information","level":2,"score":0.6488708},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.6175412},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.5988305},{"id":"https://openalex.org/C169391604","wikidata":"https://www.wikidata.org/wiki/Q7604402","display_name":"Statistical manifold","level":5,"score":0.5482765},{"id":"https://openalex.org/C165464430","wikidata":"https://www.wikidata.org/wiki/Q1570441","display_name":"Parameterized complexity","level":2,"score":0.5164871},{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.5095239},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5035469},{"id":"https://openalex.org/C127104897","wikidata":"https://www.wikidata.org/wiki/Q5454858","display_name":"Fisher information metric","level":4,"score":0.4954294},{"id":"https://openalex.org/C192939610","wikidata":"https://www.wikidata.org/wiki/Q188444","display_name":"Differential geometry","level":2,"score":0.48416406},{"id":"https://openalex.org/C181104567","wikidata":"https://www.wikidata.org/wiki/Q761383","display_name":"Riemannian geometry","level":2,"score":0.48255533},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.46968678},{"id":"https://openalex.org/C149441793","wikidata":"https://www.wikidata.org/wiki/Q200726","display_name":"Probability distribution","level":2,"score":0.46748963},{"id":"https://openalex.org/C191393472","wikidata":"https://www.wikidata.org/wiki/Q15222032","display_name":"Bias of an estimator","level":4,"score":0.46118265},{"id":"https://openalex.org/C14539891","wikidata":"https://www.wikidata.org/wiki/Q1070305","display_name":"Chernoff bound","level":2,"score":0.46031472},{"id":"https://openalex.org/C185142706","wikidata":"https://www.wikidata.org/wiki/Q1134404","display_name":"Covariance matrix","level":2,"score":0.44620484},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.4436673},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.34124154},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.28056037},{"id":"https://openalex.org/C198043062","wikidata":"https://www.wikidata.org/wiki/Q180953","display_name":"Metric space","level":2,"score":0.21382475},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.19569525},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.19372842},{"id":"https://openalex.org/C165646398","wikidata":"https://www.wikidata.org/wiki/Q3755281","display_name":"Minimum-variance unbiased estimator","level":3,"score":0.15069258},{"id":"https://openalex.org/C12520029","wikidata":"https://www.wikidata.org/wiki/Q1147161","display_name":"Scalar curvature","level":3,"score":0.08509937},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C195065555","wikidata":"https://www.wikidata.org/wiki/Q214881","display_name":"Curvature","level":2,"score":0.0},{"id":"https://openalex.org/C177547787","wikidata":"https://www.wikidata.org/wiki/Q6034319","display_name":"Injective metric space","level":3,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isit.2018.8437472","pdf_url":null,"source":{"id":"https://openalex.org/S4363604560","display_name":"2022 IEEE International Symposium on Information Theory (ISIT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1801.04658","pdf_url":"http://arxiv.org/pdf/1801.04658","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1801.04658","pdf_url":"http://arxiv.org/pdf/1801.04658","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W107085514","https://openalex.org/W1479979375","https://openalex.org/W1507943102","https://openalex.org/W1565466005","https://openalex.org/W1573082642","https://openalex.org/W1573407022","https://openalex.org/W1586524688","https://openalex.org/W1587069887","https://openalex.org/W1970789124","https://openalex.org/W1974086818","https://openalex.org/W1980595940","https://openalex.org/W1998202021","https://openalex.org/W2016625067","https://openalex.org/W2017586266","https://openalex.org/W2052664531","https://openalex.org/W2096413780","https://openalex.org/W2116261083","https://openalex.org/W2116990014","https://openalex.org/W2118443009","https://openalex.org/W2136739711","https://openalex.org/W2150227131","https://openalex.org/W2164273299","https://openalex.org/W2170215665","https://openalex.org/W2396020314","https://openalex.org/W2521913697","https://openalex.org/W2547980786","https://openalex.org/W2549275606","https://openalex.org/W2579673364","https://openalex.org/W2963085863","https://openalex.org/W2963857170","https://openalex.org/W3122257032","https://openalex.org/W4229633200","https://openalex.org/W4299657804","https://openalex.org/W78248976"],"related_works":["https://openalex.org/W4387297266","https://openalex.org/W4300760355","https://openalex.org/W4291625303","https://openalex.org/W334503494","https://openalex.org/W3206765662","https://openalex.org/W2963272769","https://openalex.org/W2949438187","https://openalex.org/W2737579912","https://openalex.org/W2155379735","https://openalex.org/W1742234374"],"abstract_inverted_index":{"Information":[0,67],"geometry":[1,13,21],"describes":[2],"a":[3,49,119],"framework":[4,83],"where":[5],"probability":[6,26,58],"densities":[7],"can":[8],"be":[9],"viewed":[10],"as":[11],"differential":[12],"structures.":[14],"This":[15],"approach":[16],"has":[17,84],"shown":[18],"that":[19,28,61],"the":[20,23,38,53,56,65,73,105,148],"in":[22,71,81,109],"space":[24],"of":[25,41],"distributions":[27,59],"are":[29],"parameterized":[30,57],"by":[31],"their":[32,138,153],"covariance":[33],"matrices":[34],"is":[35,62,96,126],"linked":[36],"to":[37,64,86,128,147,155],"fundamental":[39],"concepts":[40],"estimation":[42],"theory.":[43],"In":[44,114],"particular,":[45],"prior":[46],"work":[47,80],"proposes":[48],"Riemannian":[50,121],"metric":[51,122],"-":[52,60],"distance":[54],"between":[55],"equivalent":[63],"Fisher":[66],"Matrix,":[68],"and":[69,102,133],"helpful":[70],"obtaining":[72],"deterministic":[74,134],"Cram\u00e9r-Rao":[75],"lower":[76],"bound":[77],"(CRLB).":[78],"Recent":[79],"this":[82,115],"led":[85],"establishing":[87],"links":[88],"with":[89,137],"several":[90],"practical":[91],"applications.":[92],"However,":[93],"classical":[94],"CRLB":[95,132,135],"useful":[97],"only":[98],"for":[99],"unbiased":[100],"estimators":[101],"inaccurately":[103],"predicts":[104],"mean":[106],"square":[107],"error":[108],"low":[110,156],"signal-to-noise":[111],"(SNR)":[112],"scenarios.":[113],"paper,":[116],"we":[117],"propose":[118],"general":[120],"that,":[123],"at":[124],"once,":[125],"used":[127],"obtain":[129],"both":[130],"Bayesian":[131],"along":[136],"vector":[139],"parameter":[140],"extensions.":[141],"We":[142],"also":[143],"extend":[144],"our":[145],"results":[146],"Barankin":[149],"bound,":[150],"thereby":[151],"enhancing":[152],"applicability":[154],"SNR":[157],"situations.":[158]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963272769","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":7}],"updated_date":"2025-03-21T14:55:22.347334","created_date":"2019-07-30"}