{"id":"https://openalex.org/W2765297235","doi":"https://doi.org/10.1109/isgt.2017.8086043","title":"Recurrent neural network based user classification for smart grids","display_name":"Recurrent neural network based user classification for smart grids","publication_year":2017,"publication_date":"2017-04-01","ids":{"openalex":"https://openalex.org/W2765297235","doi":"https://doi.org/10.1109/isgt.2017.8086043","mag":"2765297235"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isgt.2017.8086043","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5010807777","display_name":"K\u00e1lm\u00e1n Tornai","orcid":"https://orcid.org/0000-0003-1852-0816"},"institutions":[{"id":"https://openalex.org/I31882830","display_name":"P\u00e1zm\u00e1ny P\u00e9ter Catholic University","ror":"https://ror.org/05v9kya57","country_code":"HU","type":"education","lineage":["https://openalex.org/I31882830"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Kalman Tornai","raw_affiliation_strings":["Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary"],"affiliations":[{"raw_affiliation_string":"Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary","institution_ids":["https://openalex.org/I31882830"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037792885","display_name":"Andr\u00e1s Ol\u00e1h","orcid":"https://orcid.org/0009-0003-4796-8932"},"institutions":[{"id":"https://openalex.org/I31882830","display_name":"P\u00e1zm\u00e1ny P\u00e9ter Catholic University","ror":"https://ror.org/05v9kya57","country_code":"HU","type":"education","lineage":["https://openalex.org/I31882830"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Andr\u00e1s Ol\u00e1h","raw_affiliation_strings":["Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary"],"affiliations":[{"raw_affiliation_string":"Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary","institution_ids":["https://openalex.org/I31882830"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067417030","display_name":"Rajmund Drenyovszki","orcid":"https://orcid.org/0000-0002-9462-2729"},"institutions":[],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Rajmund Drenyovszki","raw_affiliation_strings":["GAMF Faculty of Engineering and Computer Science, Pallas Athene University, Kecskemet, Hungary"],"affiliations":[{"raw_affiliation_string":"GAMF Faculty of Engineering and Computer Science, Pallas Athene University, Kecskemet, Hungary","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029933708","display_name":"L\u00f3r\u00e1nt Kov\u00e1cs","orcid":"https://orcid.org/0000-0001-9930-348X"},"institutions":[{"id":"https://openalex.org/I29770179","display_name":"Budapest University of Technology and Economics","ror":"https://ror.org/02w42ss30","country_code":"HU","type":"education","lineage":["https://openalex.org/I29770179"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"L\u00f3r\u00e1nt Kov\u00e1cs","raw_affiliation_strings":["Department of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, Hungary"],"affiliations":[{"raw_affiliation_string":"Department of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, Hungary","institution_ids":["https://openalex.org/I29770179"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5098429562","display_name":"Istv\u00e1n Pint\u00e9","orcid":null},"institutions":[],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Istv\u00e1n Pint\u00e9","raw_affiliation_strings":["Pallas Athene University, GAMF Faculty of Engineering and Computer Science, Kecskemet, Hungary"],"affiliations":[{"raw_affiliation_string":"Pallas Athene University, GAMF Faculty of Engineering and Computer Science, Kecskemet, Hungary","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5046057044","display_name":"J\u00e1nos Levendovszky","orcid":"https://orcid.org/0000-0003-1406-442X"},"institutions":[{"id":"https://openalex.org/I29770179","display_name":"Budapest University of Technology and Economics","ror":"https://ror.org/02w42ss30","country_code":"HU","type":"education","lineage":["https://openalex.org/I29770179"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Janos Levendovszky","raw_affiliation_strings":["Budapest University of Technology and Economics, Department of Networked Systems and Services, Budapest, Hungary"],"affiliations":[{"raw_affiliation_string":"Budapest University of Technology and Economics, Department of Networked Systems and Services, Budapest, Hungary","institution_ids":["https://openalex.org/I29770179"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.13,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":13,"citation_normalized_percentile":{"value":0.92742,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10603","display_name":"Smart Grid Energy Management","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/consumption","display_name":"Consumption","score":0.4329606}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78431404},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.65207916},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.58050185},{"id":"https://openalex.org/C94124525","wikidata":"https://www.wikidata.org/wiki/Q912550","display_name":"Categorization","level":2,"score":0.56211406},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.55730045},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5567225},{"id":"https://openalex.org/C10558101","wikidata":"https://www.wikidata.org/wiki/Q689855","display_name":"Smart grid","level":2,"score":0.53017163},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5278948},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.45987976},{"id":"https://openalex.org/C30772137","wikidata":"https://www.wikidata.org/wiki/Q5164762","display_name":"Consumption (sociology)","level":2,"score":0.4329606},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12035504},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isgt.2017.8086043","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.68}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W1997102766","https://openalex.org/W1998238819","https://openalex.org/W2002011878","https://openalex.org/W2030846484","https://openalex.org/W2107425660","https://openalex.org/W2111426715","https://openalex.org/W2117688906","https://openalex.org/W2124776405","https://openalex.org/W2141278204","https://openalex.org/W2152283452","https://openalex.org/W2161078209","https://openalex.org/W2509484269","https://openalex.org/W2517621268","https://openalex.org/W4205930639","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4311804456","https://openalex.org/W2735662278","https://openalex.org/W2623658258","https://openalex.org/W2382615723","https://openalex.org/W2370459448","https://openalex.org/W2165912799","https://openalex.org/W2143413548","https://openalex.org/W2105067402","https://openalex.org/W1987484445","https://openalex.org/W1969219540"],"abstract_inverted_index":{"Power":[0],"consuming":[1],"users":[2],"and":[3,16,28],"buildings":[4],"with":[5,13,22,130],"different":[6,14,23],"power":[7,36,45,53,137],"consumption":[8,87,138],"patterns":[9],"may":[10],"be":[11,18,58,62],"treated":[12],"conditions":[15],"can":[17,57,61,150],"taken":[19],"into":[20],"consideration":[21],"parameters":[24],"during":[25],"capacity":[26],"planning":[27],"distribution.":[29],"Thus":[30],"the":[31,49,78,86,98,112,121,158],"automated,":[32],"unsupervised":[33],"categorization":[34],"of":[35,43,52,77,114],"consumers":[37,54,115],"is":[38,69,85,163],"a":[39],"very":[40],"important":[41,71],"task":[42,72],"smart":[44],"transmission":[46],"systems.":[47],"Knowing":[48],"behavioral":[50],"categories":[51],"better":[55,65],"models":[56],"created":[59],"which":[60,68,91],"used":[63],"for":[64,73,82,101],"behavior":[66],"forecast":[67,88,94,122],"an":[70],"load":[74],"balancing.":[75],"One":[76],"existing":[79,131,152],"best":[80],"solutions":[81],"consumer":[83,143],"classification":[84,113,124,132,144],"based":[89,123],"scheme":[90],"applies":[92],"nonlinear":[93],"techniques":[95],"to":[96,165],"determine":[97],"class":[99,160],"assignment":[100,161],"new":[102,109],"consumers.":[103],"In":[104],"this":[105],"paper,":[106],"we":[107],"present":[108],"results":[110,127],"on":[111],"using":[116,134],"recurrent":[117,147],"neural":[118,148],"networks":[119,149],"in":[120,155],"framework.":[125],"The":[126],"are":[128],"compared":[129],"methods":[133,153],"real,":[135],"measured":[136],"data.":[139],"We":[140],"demonstrate":[141],"that":[142],"performed":[145],"by":[146],"outperform":[151],"as":[154],"several":[156],"cases":[157],"correct":[159],"rate":[162],"near":[164],"100%.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2765297235","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":1}],"updated_date":"2025-01-19T04:00:31.420276","created_date":"2017-11-10"}