{"id":"https://openalex.org/W2033095207","doi":"https://doi.org/10.1109/iscslp.2014.6936605","title":"A bottom-up kernel of pattern learning for relation extraction","display_name":"A bottom-up kernel of pattern learning for relation extraction","publication_year":2014,"publication_date":"2014-09-01","ids":{"openalex":"https://openalex.org/W2033095207","doi":"https://doi.org/10.1109/iscslp.2014.6936605","mag":"2033095207"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iscslp.2014.6936605","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101679256","display_name":"Chunyun Zhang","orcid":"https://orcid.org/0000-0002-3156-754X"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chunyun Zhang","raw_affiliation_strings":["Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016651990","display_name":"Weiran Xu","orcid":"https://orcid.org/0000-0002-9416-7666"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weiran Xu","raw_affiliation_strings":["Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101707899","display_name":"Sheng Gao","orcid":"https://orcid.org/0000-0003-1591-0595"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Sheng Gao","raw_affiliation_strings":["Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100445470","display_name":"Jun Guo","orcid":"https://orcid.org/0000-0001-9045-1339"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Guo","raw_affiliation_strings":["Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications, China"],"affiliations":[{"raw_affiliation_string":"Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications, China","institution_ids":["https://openalex.org/I139759216"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.879,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":8,"citation_normalized_percentile":{"value":0.644705,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"609","last_page":"613"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bootstrapping","display_name":"Bootstrapping (finance)","score":0.7460349},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.7139987},{"id":"https://openalex.org/keywords/relationship-extraction","display_name":"Relationship extraction","score":0.65350145},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.5569296},{"id":"https://openalex.org/keywords/tree-kernel","display_name":"Tree kernel","score":0.47019467}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75114185},{"id":"https://openalex.org/C207609745","wikidata":"https://www.wikidata.org/wiki/Q4944086","display_name":"Bootstrapping (finance)","level":2,"score":0.7460349},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.7139987},{"id":"https://openalex.org/C153604712","wikidata":"https://www.wikidata.org/wiki/Q7310755","display_name":"Relationship extraction","level":3,"score":0.65350145},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.5569296},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5343413},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.52012193},{"id":"https://openalex.org/C25343380","wikidata":"https://www.wikidata.org/wiki/Q277521","display_name":"Relation (database)","level":2,"score":0.51137656},{"id":"https://openalex.org/C140417398","wikidata":"https://www.wikidata.org/wiki/Q16933942","display_name":"Tree kernel","level":5,"score":0.47019467},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45431706},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.44858527},{"id":"https://openalex.org/C19768560","wikidata":"https://www.wikidata.org/wiki/Q320727","display_name":"Dependency (UML)","level":2,"score":0.4333884},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.42649397},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.42616418},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41780493},{"id":"https://openalex.org/C160446489","wikidata":"https://www.wikidata.org/wiki/Q7226642","display_name":"Polynomial kernel","level":4,"score":0.2611064},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17616263},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.12888452},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.1036143},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iscslp.2014.6936605","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","score":0.68,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1489949474","https://openalex.org/W1971563386","https://openalex.org/W1981082061","https://openalex.org/W1986282760","https://openalex.org/W2006258148","https://openalex.org/W2036640547","https://openalex.org/W2068737686","https://openalex.org/W2103931177","https://openalex.org/W2107598941","https://openalex.org/W2112646584","https://openalex.org/W2120814856","https://openalex.org/W2132655161","https://openalex.org/W2137023796","https://openalex.org/W2138627627","https://openalex.org/W2142849131","https://openalex.org/W2146960529","https://openalex.org/W2148603752","https://openalex.org/W2161494021","https://openalex.org/W2163362093","https://openalex.org/W2167435923","https://openalex.org/W2189472871","https://openalex.org/W2790812272","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4234806381","https://openalex.org/W2794309877","https://openalex.org/W2578456568","https://openalex.org/W2188063681","https://openalex.org/W2162757560","https://openalex.org/W2152269015","https://openalex.org/W2108059661","https://openalex.org/W2027424931","https://openalex.org/W2013039990","https://openalex.org/W1525618684"],"abstract_inverted_index":{"Measuring":[0],"the":[1,6,45,53,75,87,115,120,128],"similarity":[2,22],"of":[3,69,74,79,89,122,127],"patterns":[4,59,65],"is":[5,37,131],"key":[7],"in":[8,11,66,94,119],"pattern-based":[9],"approaches":[10],"relation":[12],"extraction.":[13],"Most":[14],"existing":[15],"methods":[16],"generally":[17],"rely":[18],"on":[19,44],"inflexible":[20],"pattern":[21,46],"measurements":[23],"which":[24,117],"often":[25],"lead":[26],"to":[27,39,62,86],"low":[28],"recall.":[29],"In":[30],"this":[31,41],"work,":[32],"a":[33],"novel":[34],"kernel-based":[35],"model":[36],"proposed":[38,81,110],"address":[40],"problem.":[42],"Depending":[43],"similarities":[47],"produced":[48],"by":[49,134],"our":[50,80,109],"bottom-up":[51,129],"kernel,":[52],"most":[54],"similar":[55],"semantic":[56],"shortest":[57],"dependency":[58],"are":[60],"selected":[61],"update":[63],"seed":[64],"each":[67],"iteration":[68],"bootstrapping.":[70],"To":[71],"obtain":[72],"insights":[73],"reliability":[76],"and":[77],"applicability":[78],"method,":[82],"we":[83],"applied":[84],"it":[85],"task":[88],"English":[90],"Slot":[91],"Filling":[92],"(ESF)":[93],"Knowledge":[95],"Base":[96],"Population":[97],"(KBP)":[98],"track":[99],"at":[100],"Text":[101],"Analysis":[102],"Conference":[103],"(TAC).":[104],"The":[105,125],"experimental":[106,136],"results":[107],"validate":[108],"method":[111],"that":[112],"importantly":[113],"improves":[114],"recall":[116],"resulting":[118],"improvement":[121],"F1":[123],"value.":[124],"effectiveness":[126],"kernel":[130],"also":[132],"verified":[133],"further":[135],"results.":[137]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2033095207","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":3}],"updated_date":"2024-12-07T13:49:54.026382","created_date":"2016-06-24"}