{"id":"https://openalex.org/W3027401716","doi":"https://doi.org/10.1109/iscid.2019.00056","title":"Application of a Kind of Grey Recursive Network in Passenger Volume Forecasting","display_name":"Application of a Kind of Grey Recursive Network in Passenger Volume Forecasting","publication_year":2019,"publication_date":"2019-12-01","ids":{"openalex":"https://openalex.org/W3027401716","doi":"https://doi.org/10.1109/iscid.2019.00056","mag":"3027401716"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iscid.2019.00056","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100446023","display_name":"Hao Wang","orcid":"https://orcid.org/0000-0001-5279-3645"},"institutions":[{"id":"https://openalex.org/I67001856","display_name":"Shanghai Institute of Technology","ror":"https://ror.org/00fjzqj15","country_code":"CN","type":"funder","lineage":["https://openalex.org/I67001856"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hao Wang","raw_affiliation_strings":["School of Computer Science and Information Engineering, Shanghai Institute of Technology, yaoShanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Information Engineering, Shanghai Institute of Technology, yaoShanghai, China","institution_ids":["https://openalex.org/I67001856"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071632554","display_name":"Meixin Huang","orcid":null},"institutions":[{"id":"https://openalex.org/I67001856","display_name":"Shanghai Institute of Technology","ror":"https://ror.org/00fjzqj15","country_code":"CN","type":"funder","lineage":["https://openalex.org/I67001856"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Meixin Huang","raw_affiliation_strings":["School of Computer Science and Information Engineering, Shanghai Institute of Technology, yaoShanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Information Engineering, Shanghai Institute of Technology, yaoShanghai, China","institution_ids":["https://openalex.org/I67001856"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036617195","display_name":"Wanli Xie","orcid":"https://orcid.org/0000-0002-8430-8250"},"institutions":[{"id":"https://openalex.org/I152031979","display_name":"Nanjing Normal University","ror":"https://ror.org/036trcv74","country_code":"CN","type":"funder","lineage":["https://openalex.org/I152031979"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wanli Xie","raw_affiliation_strings":["Institute of EduInfo Science and Engineering, Nanjing Normal University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Institute of EduInfo Science and Engineering, Nanjing Normal University, Nanjing, China","institution_ids":["https://openalex.org/I152031979"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.408198,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":61,"max":69},"biblio":{"volume":null,"issue":null,"first_page":"217","last_page":"220"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T14368","display_name":"Evaluation and Optimization Models","score":0.9274,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T14368","display_name":"Evaluation and Optimization Models","score":0.9274,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14474","display_name":"Industrial Technology and Control Systems","score":0.9077,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/operator","display_name":"Operator (biology)","score":0.64536726}],"concepts":[{"id":"https://openalex.org/C17020691","wikidata":"https://www.wikidata.org/wiki/Q139677","display_name":"Operator (biology)","level":5,"score":0.64536726},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6326475},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6160953},{"id":"https://openalex.org/C20556612","wikidata":"https://www.wikidata.org/wiki/Q4469374","display_name":"Volume (thermodynamics)","level":2,"score":0.6058355},{"id":"https://openalex.org/C42475967","wikidata":"https://www.wikidata.org/wiki/Q194292","display_name":"Operations research","level":1,"score":0.5165126},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.4598087},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.41569176},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36276174},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.22858351},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18281174},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C158448853","wikidata":"https://www.wikidata.org/wiki/Q425218","display_name":"Repressor","level":4,"score":0.0},{"id":"https://openalex.org/C86339819","wikidata":"https://www.wikidata.org/wiki/Q407384","display_name":"Transcription factor","level":3,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iscid.2019.00056","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.55,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W435830328","https://openalex.org/W4242592912","https://openalex.org/W3146111732","https://openalex.org/W2798121181","https://openalex.org/W2587527225","https://openalex.org/W2328676785","https://openalex.org/W2322380964","https://openalex.org/W2087896742","https://openalex.org/W2016805743","https://openalex.org/W1989025965"],"abstract_inverted_index":{"This":[0],"paper":[1],"combines":[2],"buffer":[3],"operator":[4],"and":[5,19,39,53,69,72],"grey":[6,37],"depth":[7,40],"recursive":[8,41],"neural":[9,42],"network,":[10],"which":[11],"can":[12,44],"greatly":[13],"reduce":[14],"the":[15,24,30,33,47],"impact":[16],"of":[17,36,62],"seasonal":[18],"market":[20,67],"policy":[21],"factors":[22],"on":[23],"original":[25],"traffic":[26],"volume":[27],"series.":[28],"At":[29],"same":[31],"time,":[32],"combination":[34],"forecasting":[35],"system":[38],"network":[43],"fully":[45],"tap":[46],"potential":[48],"law":[49],"among":[50],"multiple":[51],"sequences,":[52],"provide":[54],"decision-making":[55],"for":[56],"logistics":[57,70],"market.":[58],"Strong":[59],"support":[60],"is":[61],"great":[63],"significance":[64],"to":[65],"economic":[66],"stability":[68],"planning":[71],"decision-making.":[73]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3027401716","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-03-15T15:38:32.320750","created_date":"2020-05-29"}