{"id":"https://openalex.org/W3157370245","doi":"https://doi.org/10.1109/iscas51556.2021.9401642","title":"Video Anomaly Detection Based on Deep Generative Network","display_name":"Video Anomaly Detection Based on Deep Generative Network","publication_year":2021,"publication_date":"2021-04-27","ids":{"openalex":"https://openalex.org/W3157370245","doi":"https://doi.org/10.1109/iscas51556.2021.9401642","mag":"3157370245"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iscas51556.2021.9401642","pdf_url":null,"source":{"id":"https://openalex.org/S4363604393","display_name":"2022 IEEE International Symposium on Circuits and Systems (ISCAS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082217250","display_name":"Savath Saypadith","orcid":"https://orcid.org/0000-0001-7101-8257"},"institutions":[{"id":"https://openalex.org/I98285908","display_name":"Osaka University","ror":"https://ror.org/035t8zc32","country_code":"JP","type":"education","lineage":["https://openalex.org/I98285908"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Savath Saypadith","raw_affiliation_strings":["Graduate School of Information Science and Technology, Osaka University, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science and Technology, Osaka University, Japan","institution_ids":["https://openalex.org/I98285908"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5061693379","display_name":"Takao Onoye","orcid":"https://orcid.org/0000-0002-1894-2448"},"institutions":[{"id":"https://openalex.org/I98285908","display_name":"Osaka University","ror":"https://ror.org/035t8zc32","country_code":"JP","type":"education","lineage":["https://openalex.org/I98285908"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Takao Onoye","raw_affiliation_strings":["Graduate School of Information Science and Technology, Osaka University, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science and Technology, Osaka University, Japan","institution_ids":["https://openalex.org/I98285908"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.22,"has_fulltext":false,"cited_by_count":13,"citation_normalized_percentile":{"value":0.999914,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9858,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9795,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.7694739},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.6357195}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78330255},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.7694739},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.71318},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.6535263},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.63814384},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.6357195},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5829212},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.4925333},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.482933},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39987963},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.20384648},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.09581119},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iscas51556.2021.9401642","pdf_url":null,"source":{"id":"https://openalex.org/S4363604393","display_name":"2022 IEEE International Symposium on Circuits and Systems (ISCAS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.45}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1485009520","https://openalex.org/W1901129140","https://openalex.org/W1959608418","https://openalex.org/W2064675550","https://openalex.org/W2097117768","https://openalex.org/W2122361470","https://openalex.org/W2163612318","https://openalex.org/W2194775991","https://openalex.org/W2295107390","https://openalex.org/W2341058432","https://openalex.org/W2565639579","https://openalex.org/W2579718262","https://openalex.org/W2753738274","https://openalex.org/W2901629142","https://openalex.org/W2962791923","https://openalex.org/W2963073614","https://openalex.org/W2963610939","https://openalex.org/W2963795951","https://openalex.org/W3015832418","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4283314094","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,45],"present":[4],"a":[5],"framework":[6,36,76,90,103],"for":[7],"the":[8,24,35,39,56,64,80,88,115],"detection":[9,81],"of":[10,55,69,111],"anomalies":[11],"in":[12,74,109],"video":[13],"scenes.":[14],"Both":[15],"spatial":[16],"and":[17,21,30,71,98,107],"temporal":[18],"features":[19,54],"extract":[20],"learn":[22],"through":[23],"framework.":[25],"We":[26,86],"employ":[27],"inception":[28],"modules":[29],"residual":[31],"skip":[32],"connections":[33],"inside":[34],"to":[37],"make":[38],"network":[40],"learning":[41],"higher-level":[42],"features,":[43],"which":[44,113],"call":[46],"\"multi-scale":[47],"U-Net\".":[48],"A":[49],"multi-scale":[50],"U-Net":[51],"kept":[52],"useful":[53],"image":[57],"that":[58],"lost":[59],"during":[60],"training":[61,70],"caused":[62],"by":[63],"convolution":[65],"operator.":[66],"The":[67],"numbers":[68],"testing":[72],"parameters":[73],"our":[75],"are":[77],"reduced":[78],"while":[79],"accuracy":[82],"is":[83],"still":[84],"improved.":[85],"evaluated":[87],"proposed":[89,102],"on":[91],"three":[92],"benchmark":[93],"datasets:":[94],"UCSD,":[95],"CHUK":[96],"Avenue":[97],"ShanghaiTech":[99],"dataset.":[100],"Our":[101],"achieved":[104],"95.7%,":[105],"86.8%":[106],"73.0%":[108],"terms":[110],"AUC,":[112],"surpasses":[114],"state-of-art":[116],"learning-based":[117],"methods.":[118]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3157370245","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":2}],"updated_date":"2025-01-07T17:05:22.854535","created_date":"2021-05-10"}