{"id":"https://openalex.org/W1605844729","doi":"https://doi.org/10.1109/iscas.1994.409586","title":"High speed analog filtering using feedforward neural network architectures","display_name":"High speed analog filtering using feedforward neural network architectures","publication_year":2002,"publication_date":"2002-12-17","ids":{"openalex":"https://openalex.org/W1605844729","doi":"https://doi.org/10.1109/iscas.1994.409586","mag":"1605844729"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iscas.1994.409586","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062739533","display_name":"Y. Chu","orcid":null},"institutions":[{"id":"https://openalex.org/I72951846","display_name":"Washington State University","ror":"https://ror.org/05dk0ce17","country_code":"US","type":"education","lineage":["https://openalex.org/I72951846"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Y. Chu","raw_affiliation_strings":["Sch. of Electr. Eng. & Comput. Sci.,, Washington State Univ., Pullman, WA, USA"],"affiliations":[{"raw_affiliation_string":"Sch. of Electr. Eng. & Comput. Sci.,, Washington State Univ., Pullman, WA, USA","institution_ids":["https://openalex.org/I72951846"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065014991","display_name":"I. Mehr","orcid":null},"institutions":[{"id":"https://openalex.org/I72951846","display_name":"Washington State University","ror":"https://ror.org/05dk0ce17","country_code":"US","type":"education","lineage":["https://openalex.org/I72951846"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"I. Mehr","raw_affiliation_strings":["Sch. of Electr. Eng. & Comput. Sci.,, Washington State Univ., Pullman, WA, USA"],"affiliations":[{"raw_affiliation_string":"Sch. of Electr. Eng. & Comput. Sci.,, Washington State Univ., Pullman, WA, USA","institution_ids":["https://openalex.org/I72951846"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025483422","display_name":"T.L. Sculley","orcid":null},"institutions":[{"id":"https://openalex.org/I72951846","display_name":"Washington State University","ror":"https://ror.org/05dk0ce17","country_code":"US","type":"education","lineage":["https://openalex.org/I72951846"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"T. Sculley","raw_affiliation_strings":["Sch. of Electr. Eng. & Comput. Sci.,, Washington State Univ., Pullman, WA, USA"],"affiliations":[{"raw_affiliation_string":"Sch. of Electr. Eng. & Comput. Sci.,, Washington State Univ., Pullman, WA, USA","institution_ids":["https://openalex.org/I72951846"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10323","display_name":"Analog and Mixed-Signal Circuit Design","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11236","display_name":"Control Systems and Identification","score":0.9873,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/analogue-filter","display_name":"Analogue filter","score":0.65907204},{"id":"https://openalex.org/keywords/feed-forward","display_name":"Feed forward","score":0.5236803},{"id":"https://openalex.org/keywords/feedforward-neural-network","display_name":"Feedforward neural network","score":0.4705242}],"concepts":[{"id":"https://openalex.org/C199845137","wikidata":"https://www.wikidata.org/wiki/Q145490","display_name":"Network topology","level":2,"score":0.7104025},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.68652767},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6853122},{"id":"https://openalex.org/C176046018","wikidata":"https://www.wikidata.org/wiki/Q359205","display_name":"Analogue filter","level":4,"score":0.65907204},{"id":"https://openalex.org/C38858127","wikidata":"https://www.wikidata.org/wiki/Q5441228","display_name":"Feed forward","level":2,"score":0.5236803},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.48583218},{"id":"https://openalex.org/C47702885","wikidata":"https://www.wikidata.org/wiki/Q5441227","display_name":"Feedforward neural network","level":3,"score":0.4705242},{"id":"https://openalex.org/C12713177","wikidata":"https://www.wikidata.org/wiki/Q1900281","display_name":"Perspective (graphical)","level":2,"score":0.45853245},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39934742},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.384071},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.3446403},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.33698785},{"id":"https://openalex.org/C133731056","wikidata":"https://www.wikidata.org/wiki/Q4917288","display_name":"Control engineering","level":1,"score":0.2398619},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18484655},{"id":"https://openalex.org/C36390408","wikidata":"https://www.wikidata.org/wiki/Q1163067","display_name":"Digital filter","level":3,"score":0.12339985},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.08839989},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iscas.1994.409586","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":4,"referenced_works":["https://openalex.org/W2058399474","https://openalex.org/W2102227134","https://openalex.org/W2137585364","https://openalex.org/W2149665876"],"related_works":["https://openalex.org/W4390752998","https://openalex.org/W4311212821","https://openalex.org/W3121106353","https://openalex.org/W2982600058","https://openalex.org/W2286391053","https://openalex.org/W2158578859","https://openalex.org/W2115072676","https://openalex.org/W2102065768","https://openalex.org/W2045727192","https://openalex.org/W1529660427"],"abstract_inverted_index":{"The":[0,24],"design":[1],"of":[2,9,18,39,42,64,83],"analog":[3,104],"filters":[4,105],"has":[5],"been":[6],"a":[7,15,32,47],"topic":[8],"research":[10],"for":[11,20,99],"many":[12],"years,":[13],"yielding":[14],"wide":[16],"variety":[17],"techniques":[19],"addressing":[21],"the":[22,40],"problem.":[23],"work":[25],"described":[26],"here":[27],"approaches":[28],"this":[29],"task":[30],"from":[31],"neural":[33,43],"network":[34,85],"perspective":[35],"to":[36,50,56],"obtain":[37],"some":[38],"advantages":[41],"systems,":[44],"such":[45],"as":[46],"high":[48,60,101],"tolerance":[49],"component":[51],"imprecision":[52],"and":[53,79],"an":[54],"ability":[55],"train":[57],"or":[58],"adapt":[59],"order":[61],"structures.":[62],"Investigations":[63],"linear":[65],"filter":[66],"networks":[67],"utilizing":[68],"neural-like":[69],"system":[70],"topologies":[71],"are":[72,92],"presented,":[73],"along":[74],"with":[75,94],"accompanying":[76],"training":[77],"algorithms":[78],"simulation":[80],"results.":[81],"Designs":[82],"several":[84],"components":[86],"in":[87],"2":[88],"/spl":[89],"mu/m":[90],"CMOS":[91],"described,":[93],"simulations":[95],"indicating":[96],"their":[97],"potential":[98],"implementing":[100],"order,":[102],"self-programming":[103],"at":[106],"bandwidths":[107],"above":[108],"70":[109],"MHz.<":[110],">":[113]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1605844729","counts_by_year":[],"updated_date":"2024-12-24T16:28:12.727505","created_date":"2016-06-24"}