{"id":"https://openalex.org/W4386362678","doi":"https://doi.org/10.1109/isbi53787.2023.10230534","title":"HNAS-Reg: Hierarchical Neural Architecture Search for Deformable Medical Image Registration","display_name":"HNAS-Reg: Hierarchical Neural Architecture Search for Deformable Medical Image Registration","publication_year":2023,"publication_date":"2023-04-18","ids":{"openalex":"https://openalex.org/W4386362678","doi":"https://doi.org/10.1109/isbi53787.2023.10230534","pmid":"https://pubmed.ncbi.nlm.nih.gov/37790881"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi53787.2023.10230534","pdf_url":null,"source":{"id":"https://openalex.org/S4363605129","display_name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544790","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031724124","display_name":"Jiong Wu","orcid":null},"institutions":[{"id":"https://openalex.org/I79576946","display_name":"University of Pennsylvania","ror":"https://ror.org/00b30xv10","country_code":"US","type":"education","lineage":["https://openalex.org/I79576946"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jiong Wu","raw_affiliation_strings":["Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA"],"affiliations":[{"raw_affiliation_string":"Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA","institution_ids":["https://openalex.org/I79576946"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5032267453","display_name":"Yong Fan","orcid":"https://orcid.org/0000-0001-9869-4685"},"institutions":[{"id":"https://openalex.org/I79576946","display_name":"University of Pennsylvania","ror":"https://ror.org/00b30xv10","country_code":"US","type":"education","lineage":["https://openalex.org/I79576946"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yong Fan","raw_affiliation_strings":["Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA"],"affiliations":[{"raw_affiliation_string":"Department of Radiology, Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA","institution_ids":["https://openalex.org/I79576946"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.332,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.600201,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"4"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/image-registration","display_name":"Image registration","score":0.6729361}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78759235},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.75223213},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7116881},{"id":"https://openalex.org/C166704113","wikidata":"https://www.wikidata.org/wiki/Q861092","display_name":"Image registration","level":3,"score":0.6729361},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.544026},{"id":"https://openalex.org/C31601959","wikidata":"https://www.wikidata.org/wiki/Q931309","display_name":"Medical imaging","level":2,"score":0.541329},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.5350064},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5171742},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.46019816},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4403379},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.43642735},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33257157},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi53787.2023.10230534","pdf_url":null,"source":{"id":"https://openalex.org/S4363605129","display_name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544790","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2308.12440","pdf_url":"http://arxiv.org/pdf/2308.12440","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/37790881","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544790","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"acceptedVersion","is_accepted":true,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1970928383","https://openalex.org/W2175579535","https://openalex.org/W2927980542","https://openalex.org/W2963136578","https://openalex.org/W2982140522","https://openalex.org/W3035201239","https://openalex.org/W3092618738","https://openalex.org/W3099561884","https://openalex.org/W3103052966","https://openalex.org/W3119333160","https://openalex.org/W3128849209","https://openalex.org/W3175794661","https://openalex.org/W4200454164","https://openalex.org/W4206996524","https://openalex.org/W4226497331","https://openalex.org/W4241074797","https://openalex.org/W4386180811"],"related_works":["https://openalex.org/W4323287533","https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3171371563","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W3024479225","https://openalex.org/W2995680918","https://openalex.org/W2951211570"],"abstract_inverted_index":{"Convolutional":[0],"neural":[1],"networks":[2],"(CNNs)":[3],"have":[4,85],"been":[5],"widely":[6],"used":[7],"to":[8,44],"build":[9,92],"deep":[10,94],"learning":[11,95],"models":[12],"for":[13,50],"medical":[14,52],"image":[15,53,99,109],"registration,":[16],"but":[17],"manually":[18],"designed":[19],"network":[20,41,48],"architectures":[21],"are":[22],"not":[23],"necessarily":[24],"optimal.":[25],"This":[26],"paper":[27],"presents":[28],"a":[29,63,93],"hierarchical":[30],"NAS":[31],"framework":[32],"(HNAS-Reg),":[33],"consisting":[34,77],"of":[35,78],"both":[36],"convolutional":[37],"operation":[38],"search":[39],"and":[40,60,102,117],"topology":[42],"search,":[43],"identify":[45],"the":[46,57,88],"optimal":[47],"architecture":[49],"deformable":[51],"registration.":[54],"To":[55],"mitigate":[56],"computational":[58],"overhead":[59],"memory":[61],"constraints,":[62],"partial":[64],"channel":[65],"strategy":[66],"is":[67],"utilized":[68],"without":[69],"losing":[70],"optimization":[71],"quality.":[72],"Experiments":[73],"on":[74],"three":[75],"datasets,":[76],"636":[79],"T1-weighted":[80],"magnetic":[81],"resonance":[82],"images":[83],"(MRIs),":[84],"demonstrated":[86],"that":[87],"proposal":[89],"method":[90],"can":[91],"model":[96,104],"with":[97,107],"improved":[98],"registration":[100,110],"accuracy":[101],"reduced":[103],"size,":[105],"compared":[106],"state-of-the-art":[108],"approaches,":[111],"including":[112],"one":[113],"representative":[114],"traditional":[115],"approach":[116],"two":[118],"unsupervised":[119],"learning-based":[120],"approaches.":[121]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386362678","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-03T05:05:00.548443","created_date":"2023-09-02"}