{"id":"https://openalex.org/W3208220961","doi":"https://doi.org/10.1109/isbi52829.2022.9761540","title":"Unsupervised PET Reconstruction from a Bayesian Perspective","display_name":"Unsupervised PET Reconstruction from a Bayesian Perspective","publication_year":2022,"publication_date":"2022-03-28","ids":{"openalex":"https://openalex.org/W3208220961","doi":"https://doi.org/10.1109/isbi52829.2022.9761540","mag":"3208220961"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi52829.2022.9761540","pdf_url":null,"source":{"id":"https://openalex.org/S4363605129","display_name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2110.15568","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5043865358","display_name":"Chenyu Shen","orcid":null},"institutions":[{"id":"https://openalex.org/I24185976","display_name":"Sichuan University","ror":"https://ror.org/011ashp19","country_code":"CN","type":"funder","lineage":["https://openalex.org/I24185976"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chenyu Shen","raw_affiliation_strings":["Sichuan University,College of Computer Science,Chengdu,China,610065"],"affiliations":[{"raw_affiliation_string":"Sichuan University,College of Computer Science,Chengdu,China,610065","institution_ids":["https://openalex.org/I24185976"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045882773","display_name":"Wenjun Xia","orcid":"https://orcid.org/0000-0002-0428-1490"},"institutions":[{"id":"https://openalex.org/I24185976","display_name":"Sichuan University","ror":"https://ror.org/011ashp19","country_code":"CN","type":"funder","lineage":["https://openalex.org/I24185976"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenjun Xia","raw_affiliation_strings":["Sichuan University,College of Computer Science,Chengdu,China,610065"],"affiliations":[{"raw_affiliation_string":"Sichuan University,College of Computer Science,Chengdu,China,610065","institution_ids":["https://openalex.org/I24185976"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025378279","display_name":"Hongwei Ye","orcid":"https://orcid.org/0000-0001-7079-1483"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongwei Ye","raw_affiliation_strings":["Minfound Medical Systems Co. Ltd.,Hangzhou,China,310000"],"affiliations":[{"raw_affiliation_string":"Minfound Medical Systems Co. Ltd.,Hangzhou,China,310000","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013952458","display_name":"Mingzheng Hou","orcid":"https://orcid.org/0000-0002-7520-4783"},"institutions":[{"id":"https://openalex.org/I24185976","display_name":"Sichuan University","ror":"https://ror.org/011ashp19","country_code":"CN","type":"funder","lineage":["https://openalex.org/I24185976"]},{"id":"https://openalex.org/I4210125143","display_name":"Chengdu University","ror":"https://ror.org/034z67559","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210125143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mingzheng Hou","raw_affiliation_strings":["College of Computer Science, Sichuan University, Chengdu, China","Sichuan University,National Key Laboratory of Fundamental Science on Synthetic Vision,Chengdu,China,610065"],"affiliations":[{"raw_affiliation_string":"College of Computer Science, Sichuan University, Chengdu, China","institution_ids":["https://openalex.org/I24185976","https://openalex.org/I4210125143"]},{"raw_affiliation_string":"Sichuan University,National Key Laboratory of Fundamental Science on Synthetic Vision,Chengdu,China,610065","institution_ids":["https://openalex.org/I24185976"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100357677","display_name":"Hu Chen","orcid":"https://orcid.org/0000-0001-9300-6572"},"institutions":[{"id":"https://openalex.org/I24185976","display_name":"Sichuan University","ror":"https://ror.org/011ashp19","country_code":"CN","type":"funder","lineage":["https://openalex.org/I24185976"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hu Chen","raw_affiliation_strings":["Sichuan University,College of Computer Science,Chengdu,China,610065"],"affiliations":[{"raw_affiliation_string":"Sichuan University,College of Computer Science,Chengdu,China,610065","institution_ids":["https://openalex.org/I24185976"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100351184","display_name":"Yan Liu","orcid":"https://orcid.org/0000-0003-4881-8429"},"institutions":[{"id":"https://openalex.org/I24185976","display_name":"Sichuan University","ror":"https://ror.org/011ashp19","country_code":"CN","type":"funder","lineage":["https://openalex.org/I24185976"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yan Liu","raw_affiliation_strings":["Sichuan University,College of Electrical Engineering,Chengdu,China,610065"],"affiliations":[{"raw_affiliation_string":"Sichuan University,College of Electrical Engineering,Chengdu,China,610065","institution_ids":["https://openalex.org/I24185976"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089126739","display_name":"Jiliu Zhou","orcid":"https://orcid.org/0000-0003-4659-8549"},"institutions":[{"id":"https://openalex.org/I24185976","display_name":"Sichuan University","ror":"https://ror.org/011ashp19","country_code":"CN","type":"funder","lineage":["https://openalex.org/I24185976"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiliu Zhou","raw_affiliation_strings":["Sichuan University,College of Computer Science,Chengdu,China,610065"],"affiliations":[{"raw_affiliation_string":"Sichuan University,College of Computer Science,Chengdu,China,610065","institution_ids":["https://openalex.org/I24185976"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5042956862","display_name":"Yi Zhang","orcid":"https://orcid.org/0000-0003-0248-7644"},"institutions":[{"id":"https://openalex.org/I24185976","display_name":"Sichuan University","ror":"https://ror.org/011ashp19","country_code":"CN","type":"funder","lineage":["https://openalex.org/I24185976"]},{"id":"https://openalex.org/I4210125143","display_name":"Chengdu University","ror":"https://ror.org/034z67559","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210125143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yi Zhang","raw_affiliation_strings":["College of Computer Science, Sichuan University, Chengdu, China","Sichuan University,School of Cyber Science and Engineering,Chengdu,China,610065"],"affiliations":[{"raw_affiliation_string":"College of Computer Science, Sichuan University, Chengdu, China","institution_ids":["https://openalex.org/I24185976","https://openalex.org/I4210125143"]},{"raw_affiliation_string":"Sichuan University,School of Cyber Science and Engineering,Chengdu,China,610065","institution_ids":["https://openalex.org/I24185976"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.341,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.912376,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":78,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10378","display_name":"Advanced MRI Techniques and Applications","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.80006635},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.6631657},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.53208965}],"concepts":[{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.80006635},{"id":"https://openalex.org/C111350023","wikidata":"https://www.wikidata.org/wiki/Q1191869","display_name":"Markov chain Monte Carlo","level":3,"score":0.6985315},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.6631657},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6413596},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6221085},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.6032509},{"id":"https://openalex.org/C141379421","wikidata":"https://www.wikidata.org/wiki/Q6094427","display_name":"Iterative reconstruction","level":2,"score":0.5723757},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.53208965},{"id":"https://openalex.org/C135252773","wikidata":"https://www.wikidata.org/wiki/Q1567213","display_name":"Inverse problem","level":2,"score":0.44807696},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41897362},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33685812},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3314808},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20107716},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.18870446},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi52829.2022.9761540","pdf_url":null,"source":{"id":"https://openalex.org/S4363605129","display_name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2110.15568","pdf_url":"https://arxiv.org/pdf/2110.15568","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2110.15568","pdf_url":"https://arxiv.org/pdf/2110.15568","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.53}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":65,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1829781029","https://openalex.org/W1901129140","https://openalex.org/W1930373509","https://openalex.org/W1971524069","https://openalex.org/W1973814931","https://openalex.org/W1988484725","https://openalex.org/W2011351434","https://openalex.org/W2014351445","https://openalex.org/W2017162022","https://openalex.org/W2034135634","https://openalex.org/W2069629287","https://openalex.org/W2070281674","https://openalex.org/W2083927153","https://openalex.org/W2089050201","https://openalex.org/W2097073572","https://openalex.org/W2111422394","https://openalex.org/W2114558038","https://openalex.org/W2116670064","https://openalex.org/W2133257322","https://openalex.org/W2138643603","https://openalex.org/W2144193737","https://openalex.org/W2161340280","https://openalex.org/W2167433878","https://openalex.org/W2194775991","https://openalex.org/W2238987678","https://openalex.org/W2315736467","https://openalex.org/W2496899299","https://openalex.org/W2508457857","https://openalex.org/W2541775523","https://openalex.org/W2571496542","https://openalex.org/W2573726823","https://openalex.org/W2584483805","https://openalex.org/W2613718673","https://openalex.org/W2743780012","https://openalex.org/W2793419304","https://openalex.org/W2798538010","https://openalex.org/W2887579808","https://openalex.org/W2891433050","https://openalex.org/W2898241136","https://openalex.org/W2906587342","https://openalex.org/W2921467067","https://openalex.org/W2924160033","https://openalex.org/W2963383962","https://openalex.org/W2963385325","https://openalex.org/W2964013315","https://openalex.org/W2964141055","https://openalex.org/W2970280802","https://openalex.org/W2970971581","https://openalex.org/W2971791246","https://openalex.org/W2987283719","https://openalex.org/W2997862893","https://openalex.org/W3004829055","https://openalex.org/W3015751822","https://openalex.org/W3022291895","https://openalex.org/W3027600659","https://openalex.org/W3037333647","https://openalex.org/W3041500444","https://openalex.org/W3129478946","https://openalex.org/W3145248306","https://openalex.org/W3157423176","https://openalex.org/W3165310467","https://openalex.org/W3172797549","https://openalex.org/W3186103791","https://openalex.org/W4288409091"],"related_works":["https://openalex.org/W4298004047","https://openalex.org/W3134728064","https://openalex.org/W2387685679","https://openalex.org/W2374214022","https://openalex.org/W2347781941","https://openalex.org/W2115238236","https://openalex.org/W2077506191","https://openalex.org/W2061980133","https://openalex.org/W2050855072","https://openalex.org/W1965977581"],"abstract_inverted_index":{"Positron":[0],"emission":[1],"tomography":[2],"(PET)":[3],"reconstruction":[4],"becomes":[5],"an":[6],"ill-posed":[7],"inverse":[8],"problem":[9],"due":[10],"to":[11,27,59,97,115,135],"the":[12,61,68,80,85,99,112,118],"low-count":[13],"projection":[14],"data":[15],"(sinogram).":[16],"In":[17],"this":[18],"paper,":[19],"we":[20],"leverage":[21],"DeepRED":[22,42],"from":[23,31],"a":[24,32,44],"Bayesian":[25],"perspective":[26],"reconstruct":[28],"PET":[29],"image":[30,51],"single":[33],"corrupted":[34],"sinogram":[35],"without":[36],"any":[37],"supervised":[38],"or":[39],"auxiliary":[40],"in-formation.":[41],"is":[43,87,95,109],"typical":[45],"representation":[46],"learning":[47],"that":[48,126],"combines":[49],"deep":[50],"prior":[52],"(DIP)":[53],"and":[54,83,138,144],"regularization":[55],"by":[56],"de-noising":[57],"(RED)":[58],"mitigate":[60],"overfitting":[62],"of":[63,67],"network":[64],"training.":[65],"Instead":[66],"conventional":[69],"denoisers":[70],"usually":[71],"used":[72],"in":[73,141],"RED,":[74],"DnCNN-like":[75],"denoiser,":[76],"which":[77],"can":[78,130],"constrain":[79],"DIP":[81],"adaptively":[82],"facilitate":[84],"derivation,":[86],"employed.":[88],"Moreover,":[89],"stochastic":[90],"gradient":[91,113],"Langevin":[92],"dynamics":[93],"(SGLD)":[94],"utilized":[96],"approximate":[98],"Markov":[100],"chain":[101],"Monte":[102],"Carlo":[103],"(MCMC)":[104],"sampler.":[105],"Specifically,":[106],"Gaussian":[107],"noise":[108],"injected":[110],"into":[111],"updates":[114],"further":[116],"relieve":[117],"overfitting.":[119],"Experimental":[120],"studies":[121],"on":[122],"whole-body":[123],"dataset":[124],"demonstrate":[125],"our":[127],"proposed":[128],"method":[129],"achieve":[131],"better":[132],"performance":[133],"compared":[134],"several":[136],"classic":[137],"state-of-the-art":[139],"methods":[140],"both":[142],"qualitative":[143],"quantitative":[145],"aspects.":[146]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3208220961","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2}],"updated_date":"2025-04-30T17:19:16.393493","created_date":"2021-11-08"}