{"id":"https://openalex.org/W3165855571","doi":"https://doi.org/10.1109/isbi48211.2021.9434036","title":"Colorectal Cancer Tissue Classification Using Semi-Supervised Hypergraph Convolutional Network","display_name":"Colorectal Cancer Tissue Classification Using Semi-Supervised Hypergraph Convolutional Network","publication_year":2021,"publication_date":"2021-04-13","ids":{"openalex":"https://openalex.org/W3165855571","doi":"https://doi.org/10.1109/isbi48211.2021.9434036","mag":"3165855571"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi48211.2021.9434036","pdf_url":null,"source":{"id":"https://openalex.org/S4363605129","display_name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035672070","display_name":"Ahsan Baidar Bakht","orcid":"https://orcid.org/0000-0002-9079-0960"},"institutions":[{"id":"https://openalex.org/I176601375","display_name":"Khalifa University of Science and Technology","ror":"https://ror.org/05hffr360","country_code":"AE","type":"education","lineage":["https://openalex.org/I176601375"]}],"countries":["AE"],"is_corresponding":false,"raw_author_name":"Ahsan Baidar Bakht","raw_affiliation_strings":["Khalifa University, UAE"],"affiliations":[{"raw_affiliation_string":"Khalifa University, UAE","institution_ids":["https://openalex.org/I176601375"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071515463","display_name":"Sajid Javed","orcid":"https://orcid.org/0000-0002-0036-2875"},"institutions":[{"id":"https://openalex.org/I176601375","display_name":"Khalifa University of Science and Technology","ror":"https://ror.org/05hffr360","country_code":"AE","type":"education","lineage":["https://openalex.org/I176601375"]}],"countries":["AE"],"is_corresponding":false,"raw_author_name":"Sajid Javed","raw_affiliation_strings":["Khalifa University, UAE"],"affiliations":[{"raw_affiliation_string":"Khalifa University, UAE","institution_ids":["https://openalex.org/I176601375"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028846094","display_name":"Hasan Al-Marzouqi","orcid":"https://orcid.org/0000-0002-2826-1515"},"institutions":[{"id":"https://openalex.org/I176601375","display_name":"Khalifa University of Science and Technology","ror":"https://ror.org/05hffr360","country_code":"AE","type":"education","lineage":["https://openalex.org/I176601375"]}],"countries":["AE"],"is_corresponding":false,"raw_author_name":"Hasan AlMarzouqi","raw_affiliation_strings":["Khalifa University, UAE"],"affiliations":[{"raw_affiliation_string":"Khalifa University, UAE","institution_ids":["https://openalex.org/I176601375"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053525471","display_name":"Ahsan H. Khandoker","orcid":"https://orcid.org/0000-0002-0636-1646"},"institutions":[{"id":"https://openalex.org/I176601375","display_name":"Khalifa University of Science and Technology","ror":"https://ror.org/05hffr360","country_code":"AE","type":"education","lineage":["https://openalex.org/I176601375"]}],"countries":["AE"],"is_corresponding":false,"raw_author_name":"Ahsan Khandoker","raw_affiliation_strings":["Khalifa University, UAE"],"affiliations":[{"raw_affiliation_string":"Khalifa University, UAE","institution_ids":["https://openalex.org/I176601375"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5059512412","display_name":"Naoufel Werghi","orcid":"https://orcid.org/0000-0002-5542-448X"},"institutions":[{"id":"https://openalex.org/I176601375","display_name":"Khalifa University of Science and Technology","ror":"https://ror.org/05hffr360","country_code":"AE","type":"education","lineage":["https://openalex.org/I176601375"]}],"countries":["AE"],"is_corresponding":false,"raw_author_name":"Naoufel Werghi","raw_affiliation_strings":["Khalifa University, UAE"],"affiliations":[{"raw_affiliation_string":"Khalifa University, UAE","institution_ids":["https://openalex.org/I176601375"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.99,"has_fulltext":false,"cited_by_count":10,"citation_normalized_percentile":{"value":0.832635,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hypergraph","display_name":"Hypergraph","score":0.88211393}],"concepts":[{"id":"https://openalex.org/C2781221856","wikidata":"https://www.wikidata.org/wiki/Q840247","display_name":"Hypergraph","level":2,"score":0.88211393},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7446707},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71065515},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6580476},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6365839},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5325994},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41591114},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17642468},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi48211.2021.9434036","pdf_url":null,"source":{"id":"https://openalex.org/S4363605129","display_name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3","score":0.79}],"grants":[{"funder":"https://openalex.org/F4320321386","funder_display_name":"Terry Fox Foundation","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1988445395","https://openalex.org/W2025268894","https://openalex.org/W2037696125","https://openalex.org/W2041538370","https://openalex.org/W2123556341","https://openalex.org/W2168593098","https://openalex.org/W2194775991","https://openalex.org/W2282915343","https://openalex.org/W2294205003","https://openalex.org/W2435090885","https://openalex.org/W2562005596","https://openalex.org/W2566972569","https://openalex.org/W2593068728","https://openalex.org/W2638507138","https://openalex.org/W2766865858","https://openalex.org/W2790824977","https://openalex.org/W2890197544","https://openalex.org/W2902977244","https://openalex.org/W2914568698","https://openalex.org/W2923287877","https://openalex.org/W2963446712","https://openalex.org/W2997344089","https://openalex.org/W3019610623","https://openalex.org/W3089265920"],"related_works":["https://openalex.org/W4376608589","https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3138003926","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W2951211570","https://openalex.org/W1948107826","https://openalex.org/W1537073411"],"abstract_inverted_index":{"Colorectal":[0],"Cancer":[1],"(CRC)":[2],"is":[3,24,35,117],"a":[4,64,77,148,157],"leading":[5],"cause":[6],"of":[7,16,30,46,66,127,191,195],"death":[8],"around":[9],"the":[10,14,21,27,40,47,88,111,125,180],"globe,":[11],"and":[12,39,129,140,170,193],"therefore,":[13],"analysis":[15],"tumor":[17],"micro":[18],"environment":[19],"in":[20,56,156],"CRC":[22,81,98,166],"WSIs":[23],"important":[25],"for":[26,80],"early":[28],"detection":[29],"CRC.":[31],"Conventional":[32],"visual":[33],"inspection":[34],"very":[36],"time":[37],"consuming":[38],"process":[41],"can":[42],"undergo":[43],"inaccuracies":[44],"because":[45],"subject-level":[48],"assessment.":[49],"Deep":[50],"learning":[51],"has":[52],"shown":[53],"promising":[54],"results":[55,177],"medical":[57,70],"image":[58,102],"analysis.":[59],"However,":[60],"these":[61],"approaches":[62],"require":[63],"lot":[65],"labeling":[67],"images":[68],"from":[69,107],"experts.":[71],"In":[72],"this":[73],"paper,":[74],"we":[75],"propose":[76,85],"semi-supervised":[78],"algorithm":[79,182],"tissue":[82,99,154,167],"classification.":[83],"We":[84],"to":[86,92,152],"employ":[87],"hypergraph":[89,116,128],"neural":[90,150],"network":[91,151],"classify":[93],"seven":[94],"different":[95],"biologically":[96],"meaningful":[97],"types.":[100],"Firstly,":[101],"deep":[103,122],"features":[104,123,144],"are":[105,131,145,161],"extracted":[106],"input":[108],"patches":[109],"using":[110,133],"pre-trained":[112],"VGG19":[113],"model.":[114],"The":[115,137],"then":[118],"constructed":[119],"whereby":[120],"patch-level":[121,143],"represent":[124],"vertices":[126],"hyperedges":[130],"assigned":[132],"pair-wise":[134],"euclidean":[135],"distance.":[136],"edges,":[138],"vertices,":[139],"their":[141],"corresponding":[142],"passed":[146],"through":[147],"feed-forward":[149],"perform":[153],"classification":[155,168],"transductive":[158],"manner.":[159],"Experiments":[160],"performed":[162],"on":[163],"an":[164,188],"independent":[165],"dataset":[169],"compared":[171],"with":[172],"existing":[173,184],"state-of-the-art":[174],"methods.":[175],"Our":[176],"reveal":[178],"that":[179],"proposed":[181],"outperforms":[183],"methods":[185],"by":[186],"achieving":[187],"overall":[189],"accuracy":[190],"95.46%":[192],"AvTP":[194],"94.42%.":[196]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3165855571","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-20T16:51:46.386612","created_date":"2021-06-07"}