{"id":"https://openalex.org/W1998009201","doi":"https://doi.org/10.1109/isbi.2012.6235913","title":"Automatic differential segmentation of the prostate in 3-D MRI using Random Forest classification and graph-cuts optimization","display_name":"Automatic differential segmentation of the prostate in 3-D MRI using Random Forest classification and graph-cuts optimization","publication_year":2012,"publication_date":"2012-05-01","ids":{"openalex":"https://openalex.org/W1998009201","doi":"https://doi.org/10.1109/isbi.2012.6235913","mag":"1998009201"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi.2012.6235913","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5084123779","display_name":"Emmanouil Moschidis","orcid":null},"institutions":[{"id":"https://openalex.org/I2799725268","display_name":"Manchester Academic Health Science Centre","ror":"https://ror.org/04rrkhs81","country_code":"GB","type":"healthcare","lineage":["https://openalex.org/I2799725268"]},{"id":"https://openalex.org/I28407311","display_name":"University of Manchester","ror":"https://ror.org/027m9bs27","country_code":"GB","type":"funder","lineage":["https://openalex.org/I28407311"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Emmanouil Moschidis","raw_affiliation_strings":["Imaging Science and Biom\u00e9dical Engineering, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester Ml 3 9PT"],"affiliations":[{"raw_affiliation_string":"Imaging Science and Biom\u00e9dical Engineering, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester Ml 3 9PT","institution_ids":["https://openalex.org/I2799725268","https://openalex.org/I28407311"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5103290577","display_name":"Jim Graham","orcid":null},"institutions":[{"id":"https://openalex.org/I2799725268","display_name":"Manchester Academic Health Science Centre","ror":"https://ror.org/04rrkhs81","country_code":"GB","type":"healthcare","lineage":["https://openalex.org/I2799725268"]},{"id":"https://openalex.org/I28407311","display_name":"University of Manchester","ror":"https://ror.org/027m9bs27","country_code":"GB","type":"funder","lineage":["https://openalex.org/I28407311"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Jim Graham","raw_affiliation_strings":["Imaging Science and Biom\u00e9dical Engineering, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester Ml 3 9PT"],"affiliations":[{"raw_affiliation_string":"Imaging Science and Biom\u00e9dical Engineering, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester Ml 3 9PT","institution_ids":["https://openalex.org/I2799725268","https://openalex.org/I28407311"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.989,"has_fulltext":false,"cited_by_count":14,"citation_normalized_percentile":{"value":0.780917,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"1727","last_page":"1730"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10124","display_name":"Prostate Cancer Diagnosis and Treatment","score":0.9832,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9624,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/markov-random-field","display_name":"Markov random field","score":0.63986045},{"id":"https://openalex.org/keywords/cut","display_name":"Cut","score":0.63854057},{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.5111025}],"concepts":[{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.73384154},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67080116},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6610787},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6562819},{"id":"https://openalex.org/C2778045648","wikidata":"https://www.wikidata.org/wiki/Q176827","display_name":"Markov random field","level":4,"score":0.63986045},{"id":"https://openalex.org/C5134670","wikidata":"https://www.wikidata.org/wiki/Q1626444","display_name":"Cut","level":4,"score":0.63854057},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.5405321},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.52945036},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.5111025},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.4330606},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.38312167},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi.2012.6235913","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Life on land","score":0.73,"id":"https://metadata.un.org/sdg/15"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W2005334959","https://openalex.org/W2016527437","https://openalex.org/W2052617496","https://openalex.org/W2054284145","https://openalex.org/W2059432853","https://openalex.org/W2101957263","https://openalex.org/W2104052771","https://openalex.org/W2105244690","https://openalex.org/W2113137767","https://openalex.org/W2164239892","https://openalex.org/W2169551590","https://openalex.org/W2911964244","https://openalex.org/W4211144482","https://openalex.org/W79315950"],"related_works":["https://openalex.org/W4233585817","https://openalex.org/W2387690017","https://openalex.org/W2188882668","https://openalex.org/W2183780938","https://openalex.org/W2181395181","https://openalex.org/W2171149362","https://openalex.org/W2029983961","https://openalex.org/W2021544484","https://openalex.org/W2016045932","https://openalex.org/W1675950995"],"abstract_inverted_index":{"In":[0,51],"this":[1],"paper":[2],"we":[3],"address":[4],"the":[5,12,39,47,52,62,68,72],"problem":[6],"of":[7,11,22,35,49],"automated":[8,95,130],"differential":[9],"segmentation":[10,121],"prostate":[13],"in":[14,38,92,118,129],"three":[15],"dimensional":[16],"(3-D)":[17],"magnetic":[18],"resonance":[19],"images":[20],"(MRI)":[21],"patients":[23],"with":[24,98],"benign":[25],"prostatic":[26],"hyperplasia":[27],"(BPH).":[28],"We":[29],"suggest":[30],"a":[31,42,80,93,99],"framework":[32],"that":[33,132],"consists":[34],"two":[36],"stages:":[37],"first":[40],"stage,":[41,54],"Random":[43,82],"Forest":[44],"classifier":[45],"localizes":[46],"anatomy":[48],"interest.":[50],"second":[53],"Graph-Cuts":[55],"(GC)":[56],"optimization":[57,66],"is":[58,115,126],"utilized":[59],"for":[60,137],"obtaining":[61],"final":[63],"delineation.":[64],"GC":[65],"regularizes":[67],"hypotheses":[69],"produced":[70],"by":[71,75],"classification":[73],"scheme":[74],"imposing":[76],"contextual":[77],"constraints":[78],"via":[79],"Markov":[81],"Field":[83],"model.":[84],"Our":[85],"method":[86],"obtains":[87],"comparable":[88],"or":[89,128],"better":[90],"results":[91],"fully":[94],"fashion":[96],"compared":[97],"previous":[100],"semi-automatic":[101],"technique":[102],"[6].":[103],"It":[104],"also":[105],"performs":[106],"well,":[107],"when":[108],"small":[109],"training":[110],"sets":[111],"are":[112],"used.":[113],"This":[114],"particularly":[116],"useful":[117],"on-line":[119],"interactive":[120],"systems,":[122],"where":[123],"prior":[124],"knowledge":[125],"limited,":[127],"approaches":[131],"generate":[133],"ground":[134],"truth":[135],"used":[136],"model-building.":[138]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1998009201","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":2},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":1},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":3}],"updated_date":"2025-04-22T00:16:00.502808","created_date":"2016-06-24"}