{"id":"https://openalex.org/W2149689793","doi":"https://doi.org/10.1109/isbi.2009.5193089","title":"Shape-based ct lung nodule segmentation using five-dimensional mean shift clustering and MEM with shape information","display_name":"Shape-based ct lung nodule segmentation using five-dimensional mean shift clustering and MEM with shape information","publication_year":2009,"publication_date":"2009-06-01","ids":{"openalex":"https://openalex.org/W2149689793","doi":"https://doi.org/10.1109/isbi.2009.5193089","mag":"2149689793"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi.2009.5193089","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037392936","display_name":"Xujiong Ye","orcid":"https://orcid.org/0000-0003-0115-0724"},"institutions":[],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Xujiong Ye","raw_affiliation_strings":["Medicsight Public Limited Company, London, UK"],"affiliations":[{"raw_affiliation_string":"Medicsight Public Limited Company, London, UK","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108710517","display_name":"Musib Siddique","orcid":null},"institutions":[],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Musib Siddique","raw_affiliation_strings":["Medicsight Public Limited Company, London, UK"],"affiliations":[{"raw_affiliation_string":"Medicsight Public Limited Company, London, UK","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084713803","display_name":"Abdel Douiri","orcid":"https://orcid.org/0000-0002-4354-4433"},"institutions":[],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Abdel Douiri","raw_affiliation_strings":["Medicsight Public Limited Company, London, UK"],"affiliations":[{"raw_affiliation_string":"Medicsight Public Limited Company, London, UK","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090027385","display_name":"Gareth Beddoe","orcid":null},"institutions":[],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Gareth Beddoe","raw_affiliation_strings":["Medicsight Public Limited Company, London, UK"],"affiliations":[{"raw_affiliation_string":"Medicsight Public Limited Company, London, UK","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037886447","display_name":"Greg Slabaugh","orcid":"https://orcid.org/0000-0003-4060-5226"},"institutions":[],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Greg Slabaugh","raw_affiliation_strings":["Medicsight Public Limited Company, London, UK"],"affiliations":[{"raw_affiliation_string":"Medicsight Public Limited Company, London, UK","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.349219,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":64,"max":71},"biblio":{"volume":null,"issue":null,"first_page":"482","last_page":"485"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10552","display_name":"Colorectal Cancer Screening and Detection","score":0.984,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mean-shift","display_name":"Mean-shift","score":0.55890965},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.51332206},{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.4773738},{"id":"https://openalex.org/keywords/ground-glass-opacity","display_name":"Ground-glass opacity","score":0.42253444}],"concepts":[{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.65285355},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6355066},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.61017585},{"id":"https://openalex.org/C48548287","wikidata":"https://www.wikidata.org/wiki/Q6803557","display_name":"Mean-shift","level":3,"score":0.55890965},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.51332206},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.48209003},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.4773738},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.4632657},{"id":"https://openalex.org/C2777001051","wikidata":"https://www.wikidata.org/wiki/Q3150728","display_name":"Ground-glass opacity","level":4,"score":0.42253444},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3850648},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3781368},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.34319857},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.089975774},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C2781182431","wikidata":"https://www.wikidata.org/wiki/Q356033","display_name":"Adenocarcinoma","level":3,"score":0.0},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.0},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi.2009.5193089","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1507028917","https://openalex.org/W1966204165","https://openalex.org/W1997626261","https://openalex.org/W2038839211","https://openalex.org/W2067191022","https://openalex.org/W2111209861","https://openalex.org/W2122692815","https://openalex.org/W2126446504","https://openalex.org/W2157062343","https://openalex.org/W2164500538"],"related_works":["https://openalex.org/W2545971808","https://openalex.org/W2376628591","https://openalex.org/W2352790313","https://openalex.org/W2169903804","https://openalex.org/W2142709933","https://openalex.org/W2124385053","https://openalex.org/W2023748438","https://openalex.org/W1997160662","https://openalex.org/W1994653991","https://openalex.org/W1522196789"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3,17,48,67,101],"joint":[4],"spatial-intensity-shape":[5],"(JSIS)":[6],"feature-based":[7],"method":[8,96],"for":[9],"the":[10,25,30,36,75,83,121,128,131,137,148],"segmentation":[11],"of":[12,29,104,144,147],"CT":[13,31,106],"lung":[14],"nodules.":[15,111],"First,":[16],"volumetric":[18],"shape":[19,63,89],"index":[20],"(SI)":[21],"feature":[22,38,50],"based":[23],"on":[24,74,100],"second-order":[26],"partial":[27],"derivatives":[28],"image":[32],"is":[33,39,72,125,139],"calculated.":[34,126],"Next,":[35],"SI":[37],"combined":[40],"with":[41,86,141],"spatial":[42,87],"and":[43,62,88,120,153],"intensity":[44,61,78],"features":[45],"to":[46,59,81],"form":[47],"five-dimensional":[49],"vectors,":[51],"which":[52],"are":[53],"then":[54],"clustered":[55],"using":[56],"mean":[57,76,132],"shift":[58,77],"produce":[60],"mode":[64,79,90],"maps.":[65],"Finally,":[66],"modified":[68],"expectation-maximization":[69],"(MEM)":[70],"algorithm":[71],"applied":[73],"map":[80],"merge":[82],"neighboring":[84],"modes":[85],"maps":[91],"as":[92],"priors.":[93],"The":[94],"proposed":[95,129],"has":[97],"been":[98],"evaluated":[99],"clinical":[102],"dataset":[103],"thoracic":[105],"scans":[107],"that":[108],"contains":[109],"80":[110],"A":[112],"volume":[113],"overlap":[114,133],"ratio":[115,134],"between":[116],"each":[117],"segmented":[118],"nodule":[119],"ground":[122],"truth":[123],"annotation":[124],"Using":[127],"method,":[130],"over":[135],"all":[136],"nodules":[138],"0.81":[140],"standard":[142],"deviation":[143],"0.05.":[145],"Most":[146],"nodules,":[149,155],"including":[150],"challenging":[151],"juxta-vascular":[152],"juxta-pleural":[154],"can":[156],"be":[157],"properly":[158],"separated":[159],"from":[160],"adjoining":[161],"tissues.":[162]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2149689793","counts_by_year":[{"year":2014,"cited_by_count":1}],"updated_date":"2025-03-17T16:59:14.478309","created_date":"2016-06-24"}