{"id":"https://openalex.org/W2116681761","doi":"https://doi.org/10.1109/isbi.2008.4541233","title":"Improved fMRI group studies based on spatially varying non-parametric BOLD signal modeling","display_name":"Improved fMRI group studies based on spatially varying non-parametric BOLD signal modeling","publication_year":2008,"publication_date":"2008-05-01","ids":{"openalex":"https://openalex.org/W2116681761","doi":"https://doi.org/10.1109/isbi.2008.4541233","mag":"2116681761"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi.2008.4541233","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019588779","display_name":"Philippe Ciuciu","orcid":"https://orcid.org/0000-0001-5374-962X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Philippe Ciuciu","raw_affiliation_strings":["CEA, NeuroSpin, Gif-sur-Yvette"],"affiliations":[{"raw_affiliation_string":"CEA, NeuroSpin, Gif-sur-Yvette","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037765124","display_name":"Thomas Vincent","orcid":"https://orcid.org/0000-0001-6202-1585"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Thomas Vincent","raw_affiliation_strings":["CEA, NeuroSpin, Gif-sur-Yvette"],"affiliations":[{"raw_affiliation_string":"CEA, NeuroSpin, Gif-sur-Yvette","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035870535","display_name":"Anne-Laure Fouque","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Anne-Laure Fouque","raw_affiliation_strings":["CEA, NeuroSpin, Gif-sur-Yvette"],"affiliations":[{"raw_affiliation_string":"CEA, NeuroSpin, Gif-sur-Yvette","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5020334449","display_name":"Alexis Roche","orcid":"https://orcid.org/0000-0002-4821-6893"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Alexis Roche","raw_affiliation_strings":["CEA, NeuroSpin, Gif-sur-Yvette"],"affiliations":[{"raw_affiliation_string":"CEA, NeuroSpin, Gif-sur-Yvette","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.879,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":6,"citation_normalized_percentile":{"value":0.659004,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"1263","last_page":"1266"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9874,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9874,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10241","display_name":"Functional Brain Connectivity Studies","score":0.987,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.979,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/univariate","display_name":"Univariate","score":0.70826536},{"id":"https://openalex.org/keywords/statistical-parametric-mapping","display_name":"Statistical parametric mapping","score":0.5417571}],"concepts":[{"id":"https://openalex.org/C199163554","wikidata":"https://www.wikidata.org/wiki/Q1681619","display_name":"Univariate","level":3,"score":0.70826536},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67792606},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.60561776},{"id":"https://openalex.org/C2779226451","wikidata":"https://www.wikidata.org/wiki/Q903809","display_name":"Functional magnetic resonance imaging","level":2,"score":0.57858026},{"id":"https://openalex.org/C39313694","wikidata":"https://www.wikidata.org/wiki/Q2940624","display_name":"Statistical parametric mapping","level":3,"score":0.5417571},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.49658853},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48994178},{"id":"https://openalex.org/C2777855551","wikidata":"https://www.wikidata.org/wiki/Q12310021","display_name":"Subject (documents)","level":2,"score":0.46531203},{"id":"https://openalex.org/C58693492","wikidata":"https://www.wikidata.org/wiki/Q551875","display_name":"Neuroimaging","level":2,"score":0.4189446},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41557503},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3437267},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3190984},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.19638124},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.19453993},{"id":"https://openalex.org/C143409427","wikidata":"https://www.wikidata.org/wiki/Q161238","display_name":"Magnetic resonance imaging","level":2,"score":0.1886299},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.14183536},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.101661205},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C161191863","wikidata":"https://www.wikidata.org/wiki/Q199655","display_name":"Library science","level":1,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isbi.2008.4541233","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1975938737","https://openalex.org/W2048476135","https://openalex.org/W2071415508","https://openalex.org/W2082906925","https://openalex.org/W2107949125","https://openalex.org/W2115450036","https://openalex.org/W2145989015","https://openalex.org/W2149142785","https://openalex.org/W2158952170","https://openalex.org/W4210423042","https://openalex.org/W4299338244"],"related_works":["https://openalex.org/W3121881699","https://openalex.org/W2912721996","https://openalex.org/W2889939530","https://openalex.org/W2748838164","https://openalex.org/W2122079181","https://openalex.org/W2066015000","https://openalex.org/W2049578243","https://openalex.org/W2000145235","https://openalex.org/W1985848810","https://openalex.org/W1828158523"],"abstract_inverted_index":{"Multi-subject":[0],"analysis":[1,33],"of":[2,29,44,90,98,126,137,150,170],"functional":[3],"Magnetic":[4],"Resonance":[5],"Imaging":[6],"(fMRI)":[7],"data":[8],"relies":[9],"on":[10,34,41,133],"within-subject":[11,32],"studies,":[12],"which":[13],"are":[14],"usually":[15],"conducted":[16],"using":[17,147],"a":[18,30,66,134,154],"massively":[19],"univariate":[20],"approach.":[21],"In":[22],"this":[23],"paper,":[24],"we":[25,93],"investigate":[26],"the":[27,42,62,78,88,107,120,124,160,166,171],"impact":[28],"novel":[31],"group":[35,91],"studies.":[36],"Our":[37],"approach":[38],"is":[39,157],"based":[40],"use":[43],"spatial":[45,75],"mixture":[46],"models":[47],"(SMM)":[48],"in":[49,87],"a.":[50],"joint":[51],"detection-estimation":[52],"framework":[53,162],"(JDE)":[54],"[1].":[55],"This":[56],"setting":[57],"allows":[58,163],"us":[59],"to":[60,71,164],"characterise":[61],"hemodynamic":[63],"filter":[64],"at":[65],"regional":[67,167],"scale":[68],"and":[69,152],"therefore":[70],"account":[72],"for":[73],"its":[74],"variability.":[76],"As":[77],"subject-":[79],"specific":[80],"BOLD":[81,109],"effects":[82,110],"enter":[83],"as":[84,117],"input":[85],"parameters":[86],"computation":[89],"statistics,":[92],"then":[94],"compare":[95],"two":[96],"kinds":[97],"Random":[99],"effect":[100],"analyses":[101],"(RFX).":[102],"The":[103],"first":[104],"one":[105,122],"takes":[106],"estimated":[108],"computed":[111],"by":[112],"SPM":[113,151],"1":[116],"inputs":[118],"while":[119],"second":[121],"considers":[123],"results":[125],"our":[127],"JDE":[128,161],"scheme.":[129],"We":[130],"finally":[131],"show":[132],"real":[135],"dataset":[136],"15":[138],"subjects":[139],"that":[140,153],"brain":[141,172],"activations":[142],"appear":[143],"more":[144],"spatially":[145],"resolved":[146],"SMM":[148],"instead":[149],"better":[155],"sensitivity":[156],"achieved.":[158],"Moreover,":[159],"assess":[165],"inter-subject":[168],"variability":[169],"dynamics.":[173]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2116681761","counts_by_year":[{"year":2012,"cited_by_count":1}],"updated_date":"2025-03-30T23:55:15.790731","created_date":"2016-06-24"}