{"id":"https://openalex.org/W4362694662","doi":"https://doi.org/10.1109/isads56919.2023.10092053","title":"Real Time Deep Learning Algorithm for Counting Weed\u2019s Growth Stages","display_name":"Real Time Deep Learning Algorithm for Counting Weed\u2019s Growth Stages","publication_year":2023,"publication_date":"2023-03-15","ids":{"openalex":"https://openalex.org/W4362694662","doi":"https://doi.org/10.1109/isads56919.2023.10092053"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isads56919.2023.10092053","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015903659","display_name":"Abeer M. Almalky","orcid":"https://orcid.org/0000-0003-3920-9701"},"institutions":[{"id":"https://openalex.org/I110378019","display_name":"Southern Illinois University Carbondale","ror":"https://ror.org/049kefs16","country_code":"US","type":"education","lineage":["https://openalex.org/I110378019","https://openalex.org/I2801502357"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Abeer M. Almalky","raw_affiliation_strings":["School of Computing, Souther Illinois University, Carbondale, IL, USA"],"affiliations":[{"raw_affiliation_string":"School of Computing, Souther Illinois University, Carbondale, IL, USA","institution_ids":["https://openalex.org/I110378019"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5053057295","display_name":"Khaled Ragab","orcid":"https://orcid.org/0000-0002-3707-4316"},"institutions":[{"id":"https://openalex.org/I110378019","display_name":"Southern Illinois University Carbondale","ror":"https://ror.org/049kefs16","country_code":"US","type":"education","lineage":["https://openalex.org/I110378019","https://openalex.org/I2801502357"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Khaled R. Ahmed","raw_affiliation_strings":["School of Computing, Souther Illinois University, Carbondale, IL, USA"],"affiliations":[{"raw_affiliation_string":"School of Computing, Souther Illinois University, Carbondale, IL, USA","institution_ids":["https://openalex.org/I110378019"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.42,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.590165,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":68,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10616","display_name":"Smart Agriculture and AI","score":0.9813,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10616","display_name":"Smart Agriculture and AI","score":0.9813,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10111","display_name":"Remote Sensing in Agriculture","score":0.9709,"subfield":{"id":"https://openalex.org/subfields/2303","display_name":"Ecology"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12093","display_name":"Greenhouse Technology and Climate Control","score":0.9483,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.671394},{"id":"https://openalex.org/C2775891814","wikidata":"https://www.wikidata.org/wiki/Q101879","display_name":"Weed","level":2,"score":0.4959317},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47689748},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.47374117},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4592585},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.07601392},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/isads56919.2023.10092053","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Zero hunger","id":"https://metadata.un.org/sdg/2","score":0.8}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W2022246075","https://openalex.org/W2084546104","https://openalex.org/W2102128253","https://openalex.org/W2128891707","https://openalex.org/W2394911398","https://openalex.org/W2620542418","https://openalex.org/W2620742659","https://openalex.org/W2770754200","https://openalex.org/W2783018199","https://openalex.org/W2794828875","https://openalex.org/W2796060831","https://openalex.org/W2803513103","https://openalex.org/W2913227116","https://openalex.org/W2915011392","https://openalex.org/W2951705667","https://openalex.org/W2963037989","https://openalex.org/W2968911939","https://openalex.org/W3017478155","https://openalex.org/W3031130934","https://openalex.org/W3082964614","https://openalex.org/W3091303185","https://openalex.org/W3200676841","https://openalex.org/W3201082406","https://openalex.org/W4226022692","https://openalex.org/W4283719944","https://openalex.org/W4304785587"],"related_works":["https://openalex.org/W4360585206","https://openalex.org/W4323565446","https://openalex.org/W4321369474","https://openalex.org/W4285208911","https://openalex.org/W4213079790","https://openalex.org/W3215138031","https://openalex.org/W3082895349","https://openalex.org/W3009238340","https://openalex.org/W2731899572","https://openalex.org/W2248239756"],"abstract_inverted_index":{"Since":[0],"the":[1,15,27,38,45,55,72,115,124,130,137,144,150,160,167,172],"number":[2,116],"of":[3,30,37,61,89,117,123,155,163,169,183],"people":[4,12],"worldwide":[5],"is":[6,134],"anticipated":[7,28],"to":[8,19,23,25,70,149],"reach":[9],"9":[10],"billion":[11],"by":[13,136],"2050,":[14],"agriculture":[16],"production":[17],"needs":[18],"be":[20],"increased":[21],"up":[22],"70%":[24],"manage":[26],"increasing":[29],"human":[31],"demand.":[32],"However,":[33],"weeds":[34,62,118,170],"are":[35],"one":[36],"most":[39],"harmful":[40],"factors":[41],"that":[42,129],"negatively":[43],"impact":[44],"crops":[46],"production,":[47],"quality,":[48],"and":[49,59,104,113,142],"cause":[50],"economical":[51],"loses.":[52],"Accordingly,":[53],"automating":[54],"weed":[56,91],"detection,":[57],"classification,":[58],"counting":[60,114,166,181],"per":[63,171,186],"their":[64],"growth":[65,94,111,146,174],"stages":[66,175],"will":[67],"help":[68],"farmers":[69],"choose":[71],"appropriate":[73],"weeds'":[74],"controlling":[75],"techniques.":[76],"In":[77],"this":[78],"paper,":[79],"UAV":[80],"was":[81,102],"used":[82],"for":[83,106],"collecting":[84],"a":[85,97],"dataset,":[86],"which":[87],"consists":[88],"four":[90,173],"(Consolida":[92],"Regalis)":[93],"stages.":[95,147],"Additionally,":[96],"deep":[98],"learning":[99],"model":[100,139,158,179],"(YOLOv5)":[101],"developed":[103],"trained":[105],"detecting":[107,141],"weed,":[108],"classifying":[109,143],"weed's":[110,145],"stages,":[112],"occurrences":[119],"in":[120,140,153,176],"each":[121],"part":[122],"field.":[125],"The":[126],"results":[127],"report":[128],"best":[131,151,161],"precision":[132],"(82.7%)":[133],"generated":[135],"Yolov5-Large":[138],"According":[148],"performance":[152],"terms":[154],"recall,":[156],"Yolov5-sma11":[157,178],"has":[159],"recall":[162],"79.4%.":[164],"For":[165],"instances":[168],"real-time,":[177],"showes":[180],"time":[182],"0.033":[184],"millisecond":[185],"frame.":[187]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4362694662","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-07T04:47:40.501606","created_date":"2023-04-09"}