{"id":"https://openalex.org/W3182698822","doi":"https://doi.org/10.1109/iros51168.2021.9636003","title":"Probabilistic Trajectory Prediction with Structural Constraints","display_name":"Probabilistic Trajectory Prediction with Structural Constraints","publication_year":2021,"publication_date":"2021-09-27","ids":{"openalex":"https://openalex.org/W3182698822","doi":"https://doi.org/10.1109/iros51168.2021.9636003","mag":"3182698822"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iros51168.2021.9636003","pdf_url":null,"source":{"id":"https://openalex.org/S4363607734","display_name":"2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2107.04193","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5077799676","display_name":"Weiming Zhi","orcid":"https://orcid.org/0000-0002-0958-6656"},"institutions":[{"id":"https://openalex.org/I129604602","display_name":"The University of Sydney","ror":"https://ror.org/0384j8v12","country_code":"AU","type":"funder","lineage":["https://openalex.org/I129604602"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Weiming Zhi","raw_affiliation_strings":["School of Computer Science, the University of Sydney, Australia"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, the University of Sydney, Australia","institution_ids":["https://openalex.org/I129604602"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033725695","display_name":"Lionel Ott","orcid":"https://orcid.org/0000-0001-6554-0575"},"institutions":[{"id":"https://openalex.org/I35440088","display_name":"ETH Zurich","ror":"https://ror.org/05a28rw58","country_code":"CH","type":"funder","lineage":["https://openalex.org/I2799323385","https://openalex.org/I35440088"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Lionel Ott","raw_affiliation_strings":["Autonomous Systems Lab, ETH Zurich, Zurich, Switzerland"],"affiliations":[{"raw_affiliation_string":"Autonomous Systems Lab, ETH Zurich, Zurich, Switzerland","institution_ids":["https://openalex.org/I35440088"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5062619542","display_name":"F\u00e1bio Ramos","orcid":"https://orcid.org/0000-0002-2996-2188"},"institutions":[{"id":"https://openalex.org/I129604602","display_name":"The University of Sydney","ror":"https://ror.org/0384j8v12","country_code":"AU","type":"funder","lineage":["https://openalex.org/I129604602"]},{"id":"https://openalex.org/I4210127875","display_name":"Nvidia (United States)","ror":"https://ror.org/03jdj4y14","country_code":"US","type":"funder","lineage":["https://openalex.org/I4210127875"]}],"countries":["AU","US"],"is_corresponding":false,"raw_author_name":"Fabio Ramos","raw_affiliation_strings":["NVIDIA, USA","School of Computer Science, the University of Sydney, Australia"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, the University of Sydney, Australia","institution_ids":["https://openalex.org/I129604602"]},{"raw_affiliation_string":"NVIDIA, USA","institution_ids":["https://openalex.org/I4210127875"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.416,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.284277,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":66,"max":71},"biblio":{"volume":null,"issue":null,"first_page":"9849","last_page":"9856"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9785,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.89459455},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.76833},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72160894},{"id":"https://openalex.org/C2776036281","wikidata":"https://www.wikidata.org/wiki/Q48769818","display_name":"Constraint (computer-aided design)","level":2,"score":0.6542942},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.60166097},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.5889611},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53194815},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4534814},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.33209187},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18889904},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iros51168.2021.9636003","pdf_url":null,"source":{"id":"https://openalex.org/S4363607734","display_name":"2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2107.04193","pdf_url":"https://arxiv.org/pdf/2107.04193","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2107.04193","pdf_url":"https://arxiv.org/pdf/2107.04193","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1506806321","https://openalex.org/W1520813427","https://openalex.org/W1994655188","https://openalex.org/W2014602125","https://openalex.org/W2019965290","https://openalex.org/W2064675550","https://openalex.org/W2078537874","https://openalex.org/W2131668296","https://openalex.org/W2154368244","https://openalex.org/W2161819990","https://openalex.org/W2291737362","https://openalex.org/W2293883387","https://openalex.org/W2412669390","https://openalex.org/W2424778531","https://openalex.org/W2569527682","https://openalex.org/W2769555377","https://openalex.org/W2772449134","https://openalex.org/W2810931617","https://openalex.org/W2956351969","https://openalex.org/W2962687116","https://openalex.org/W2963001155","https://openalex.org/W2963209451","https://openalex.org/W2963353290","https://openalex.org/W2963930094","https://openalex.org/W2967794992","https://openalex.org/W2968355674","https://openalex.org/W2969294606","https://openalex.org/W2976025364","https://openalex.org/W2999968307","https://openalex.org/W3010865323","https://openalex.org/W3030588240","https://openalex.org/W3101813527","https://openalex.org/W4213117884"],"related_works":["https://openalex.org/W4360995134","https://openalex.org/W4323768008","https://openalex.org/W4248382324","https://openalex.org/W3131574667","https://openalex.org/W3023605104","https://openalex.org/W2387529410","https://openalex.org/W2383578611","https://openalex.org/W2101105382","https://openalex.org/W2039473718","https://openalex.org/W1941703695"],"abstract_inverted_index":{"This":[0,74,95],"work":[1],"addresses":[2],"the":[3,7,14,92,104,123,134],"problem":[4,86],"of":[5,10,59,136],"predicting":[6,19],"motion":[8,20,30,67,143,146],"trajectories":[9,68,144],"dynamic":[11],"objects":[12],"in":[13,18,97],"environment.":[15],"Recent":[16],"advances":[17],"patterns":[21,31],"often":[22],"rely":[23],"on":[24,70,91,112,129],"machine":[25],"learning":[26,51,57],"techniques":[27],"to":[28,38,82,122,139,152],"extrapolate":[29],"from":[32],"observed":[33,71],"trajectories,":[34],"with":[35],"no":[36],"mechanism":[37],"directly":[39,149],"incorporate":[40],"known":[41],"rules.":[42],"We":[43,126],"propose":[44],"a":[45,63,80,83],"novel":[46],"framework,":[47],"which":[48,87,101],"combines":[49],"probabilistic":[50,142],"and":[52,131,158],"constrained":[53,84],"trajectory":[54,93,99,119,161],"optimisation.":[55],"The":[56],"component":[58],"our":[60,110,137],"framework":[61,138],"provides":[62],"distribution":[64,75],"over":[65],"future":[66,118],"conditioned":[69],"past":[72],"coordinates.":[73],"is":[76],"then":[77],"used":[78],"as":[79],"prior":[81],"optimisation":[85],"enforces":[88],"chance":[89],"constraints":[90,151],"distribution.":[94],"results":[96],"constraint-compliant":[98],"distributions":[100,120],"closely":[102],"resemble":[103],"prior.":[105],"In":[106],"particular,":[107],"we":[108],"focus":[109],"investigation":[111],"collision":[113],"constraints,":[114],"such":[115],"that":[116],"extrapolated":[117],"conform":[121],"environment":[124],"structure.":[125],"empirically":[127],"demonstrate":[128],"real-world":[130],"simulated":[132],"datasets":[133],"ability":[135],"learn":[140],"complex":[141],"for":[145],"data,":[147],"while":[148],"enforcing":[150],"improve":[153],"generalisability,":[154],"producing":[155],"more":[156],"robust":[157],"higher":[159],"quality":[160],"distributions.":[162]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3182698822","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-04-20T15:56:50.480467","created_date":"2021-07-19"}