{"id":"https://openalex.org/W2910219960","doi":"https://doi.org/10.1109/iros.2018.8594373","title":"Attention-Aware Cross-Modal Cross-Level Fusion Network for RGB-D Salient Object Detection","display_name":"Attention-Aware Cross-Modal Cross-Level Fusion Network for RGB-D Salient Object Detection","publication_year":2018,"publication_date":"2018-10-01","ids":{"openalex":"https://openalex.org/W2910219960","doi":"https://doi.org/10.1109/iros.2018.8594373","mag":"2910219960"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iros.2018.8594373","pdf_url":null,"source":{"id":"https://openalex.org/S4363607734","display_name":"2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100353537","display_name":"Hao Chen","orcid":"https://orcid.org/0000-0002-3138-505X"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"funder","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Hao Chen","raw_affiliation_strings":["Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR"],"affiliations":[{"raw_affiliation_string":"Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100642147","display_name":"Youfu Li","orcid":"https://orcid.org/0000-0002-5227-1326"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"funder","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"You-Fu Li","raw_affiliation_strings":["Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR"],"affiliations":[{"raw_affiliation_string":"Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101913303","display_name":"Dan Su","orcid":"https://orcid.org/0000-0003-0072-0967"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"funder","lineage":["https://openalex.org/I168719708"]},{"id":"https://openalex.org/I4210105229","display_name":"City University of Hong Kong, Shenzhen Research Institute","ror":"https://ror.org/00xc0ma20","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210105229"]}],"countries":["CN","HK"],"is_corresponding":false,"raw_author_name":"Dan Su","raw_affiliation_strings":["City University of Hong Kong, Shenzhen Research Institute"],"affiliations":[{"raw_affiliation_string":"City University of Hong Kong, Shenzhen Research Institute","institution_ids":["https://openalex.org/I168719708","https://openalex.org/I4210105229"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.689,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":32,"citation_normalized_percentile":{"value":0.809551,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":"6821","last_page":"6826"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9639,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11165","display_name":"Image and Video Quality Assessment","score":0.9627,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.7975174},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.5748127},{"id":"https://openalex.org/keywords/fuse","display_name":"Fuse (electrical)","score":0.48083103}],"concepts":[{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.7975174},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7204802},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7039994},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6045909},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.5748127},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5141864},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.49028757},{"id":"https://openalex.org/C141353440","wikidata":"https://www.wikidata.org/wiki/Q182221","display_name":"Fuse (electrical)","level":2,"score":0.48083103},{"id":"https://openalex.org/C71139939","wikidata":"https://www.wikidata.org/wiki/Q910194","display_name":"Modal","level":2,"score":0.4705684},{"id":"https://openalex.org/C36464697","wikidata":"https://www.wikidata.org/wiki/Q451553","display_name":"Visualization","level":2,"score":0.45930892},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.42116073},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39422625},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.105027795},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C188027245","wikidata":"https://www.wikidata.org/wiki/Q750446","display_name":"Polymer chemistry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iros.2018.8594373","pdf_url":null,"source":{"id":"https://openalex.org/S4363607734","display_name":"2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.69}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W1497443722","https://openalex.org/W1565402342","https://openalex.org/W1593727536","https://openalex.org/W1686810756","https://openalex.org/W1772076007","https://openalex.org/W1903029394","https://openalex.org/W1938386764","https://openalex.org/W1966025376","https://openalex.org/W1969366022","https://openalex.org/W1976409045","https://openalex.org/W1976754232","https://openalex.org/W1986670485","https://openalex.org/W1993713494","https://openalex.org/W1997137149","https://openalex.org/W2000946514","https://openalex.org/W2002781701","https://openalex.org/W2020950478","https://openalex.org/W20683899","https://openalex.org/W2098702446","https://openalex.org/W2128272608","https://openalex.org/W2147527908","https://openalex.org/W2155893237","https://openalex.org/W2163605009","https://openalex.org/W2194775991","https://openalex.org/W2207044458","https://openalex.org/W2229637417","https://openalex.org/W2337762808","https://openalex.org/W2461475918","https://openalex.org/W2461758788","https://openalex.org/W2465570449","https://openalex.org/W2520640394","https://openalex.org/W2609822318","https://openalex.org/W2620958690","https://openalex.org/W2752782242","https://openalex.org/W2765838470","https://openalex.org/W2775906317","https://openalex.org/W2777686015","https://openalex.org/W2798857366","https://openalex.org/W2951527505","https://openalex.org/W2963299740","https://openalex.org/W2963420686","https://openalex.org/W2963956866","https://openalex.org/W3099871687","https://openalex.org/W3104979525"],"related_works":["https://openalex.org/W4389116644","https://openalex.org/W4239268388","https://openalex.org/W4237547500","https://openalex.org/W3000097931","https://openalex.org/W2965546495","https://openalex.org/W2373192430","https://openalex.org/W2354322770","https://openalex.org/W2153315159","https://openalex.org/W1570848052","https://openalex.org/W1537496349"],"abstract_inverted_index":{"Convolutional":[0],"neural":[1],"networks":[2],"have":[3],"achieved":[4],"wide":[5],"success":[6],"in":[7,59,129,159],"RGB":[8,38,55],"saliency":[9,23],"detection.":[10,170],"Recently,":[11],"the":[12,26,50,74,149,156],"advent":[13],"of":[14],"RGB-D":[15,30,118,160,167],"sensors":[16],"such":[17],"as":[18],"Kinect":[19],"provide":[20],"additional":[21],"geometric":[22],"cues.":[24],"However,":[25],"key":[27,157],"challenge":[28],"for":[29,103],"salient":[31,168],"object":[32,169],"detection":[33],"that":[34,148],"how":[35],"to":[36,132,154],"fuse":[37],"and":[39,53,56,106,139,162],"depth":[40,57],"information":[41],"sufficiently":[42],"is":[43,69,100,152],"still":[44],"under-studied.":[45],"Traditional":[46],"works":[47],"mainly":[48],"follow":[49],"two-stream":[51],"architecture":[52],"combine":[54],"features/decisions":[58],"an":[60,123],"early":[61],"or":[62],"late":[63],"point.":[64],"The":[65],"multi-modal":[66],"fusion":[67,119,127,161],"stage":[68],"performed":[70],"by":[71,88],"directly":[72],"concatenating":[73],"features":[75,135],"from":[76,136],"two":[77],"modalities":[78],"without":[79],"selection.":[80],"In":[81],"this":[82,86,112],"work,":[83],"we":[84,114],"address":[85],"question":[87],"proposing":[89],"a":[90,94,116],"novel":[91],"network":[92,120,151],"with":[93],"distinguished":[95],"insight:":[96],"A":[97],"selection":[98],"module":[99],"significantly":[101],"helpful":[102],"more":[104],"informative":[105],"sufficient":[107],"cross-modal":[108,125],"cross-level":[109,126],"combination.":[110],"To":[111],"end,":[113],"introduce":[115],"top-down":[117],"which":[121],"integrates":[122],"attention-aware":[124],"block":[128],"each":[130,137,140],"level":[131,138],"select":[133],"discriminative":[134],"modality.":[141],"Extensive":[142],"experiments":[143],"on":[144,166],"public":[145],"datasets":[146],"show":[147],"proposed":[150],"able":[153],"solve":[155],"problems":[158],"achieves":[163],"state-of-the-art":[164],"performance":[165]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2910219960","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":13},{"year":2020,"cited_by_count":8},{"year":2019,"cited_by_count":3}],"updated_date":"2025-03-20T21:23:49.228843","created_date":"2019-01-25"}