{"id":"https://openalex.org/W2172256479","doi":"https://doi.org/10.1109/iros.2007.4399441","title":"Feature selection in conditional random fields for activity recognition","display_name":"Feature selection in conditional random fields for activity recognition","publication_year":2007,"publication_date":"2007-10-01","ids":{"openalex":"https://openalex.org/W2172256479","doi":"https://doi.org/10.1109/iros.2007.4399441","mag":"2172256479"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iros.2007.4399441","pdf_url":null,"source":{"id":"https://openalex.org/S4363608614","display_name":"2011 IEEE/RSJ International Conference on Intelligent Robots and Systems","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://www.cs.cmu.edu/~dvail2/pubs/vail07feature.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058158369","display_name":"Douglas L. Vail","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Douglas L. Vail","raw_affiliation_strings":["Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060219657","display_name":"John Lafferty","orcid":"https://orcid.org/0000-0002-5929-220X"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"John D. Lafferty","raw_affiliation_strings":["Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5088276691","display_name":"Manuela Veloso","orcid":"https://orcid.org/0000-0001-6738-238X"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Manuela M. Veloso","raw_affiliation_strings":["Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA","institution_ids":["https://openalex.org/I74973139"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.448,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":54,"citation_normalized_percentile":{"value":0.909793,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"32","issue":null,"first_page":"3379","last_page":"3384"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Process Fault Detection and Diagnosis in Industries","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Clustering of Time Series Data and Algorithms","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization (linguistics)","score":0.6385149},{"id":"https://openalex.org/keywords/smoothing","display_name":"Smoothing","score":0.63165486},{"id":"https://openalex.org/keywords/feature-extraction","display_name":"Feature Extraction","score":0.581088},{"id":"https://openalex.org/keywords/clustering","display_name":"Clustering","score":0.532471},{"id":"https://openalex.org/keywords/dimensionality-reduction","display_name":"Dimensionality Reduction","score":0.513625},{"id":"https://openalex.org/keywords/machine-learning","display_name":"Machine Learning","score":0.508083},{"id":"https://openalex.org/keywords/video-analysis","display_name":"Video Analysis","score":0.500629}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67584294},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67542017},{"id":"https://openalex.org/C152565575","wikidata":"https://www.wikidata.org/wiki/Q1124538","display_name":"Conditional random field","level":2,"score":0.6523688},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.6385149},{"id":"https://openalex.org/C3770464","wikidata":"https://www.wikidata.org/wiki/Q775963","display_name":"Smoothing","level":2,"score":0.63165486},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.62234974},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.45925945},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.45297235},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45042926},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.43003982},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4071939},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.09234789}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iros.2007.4399441","pdf_url":null,"source":{"id":"https://openalex.org/S4363608614","display_name":"2011 IEEE/RSJ International Conference on Intelligent Robots and Systems","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.1052","pdf_url":"http://www.cs.cmu.edu/~dvail2/pubs/vail07feature.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.1052","pdf_url":"http://www.cs.cmu.edu/~dvail2/pubs/vail07feature.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.75}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1480376833","https://openalex.org/W1521452179","https://openalex.org/W1554570365","https://openalex.org/W1990980378","https://openalex.org/W2036502167","https://openalex.org/W2051434435","https://openalex.org/W2063978378","https://openalex.org/W2101095383","https://openalex.org/W2114521167","https://openalex.org/W2123277412","https://openalex.org/W2124189704","https://openalex.org/W2125838338","https://openalex.org/W2138145347","https://openalex.org/W2147880316","https://openalex.org/W2156515921","https://openalex.org/W2162988958","https://openalex.org/W2164078599","https://openalex.org/W2166276221","https://openalex.org/W2598218463"],"related_works":["https://openalex.org/W4388745254","https://openalex.org/W4213275102","https://openalex.org/W3006655138","https://openalex.org/W2980082554","https://openalex.org/W2767419625","https://openalex.org/W2389704471","https://openalex.org/W2356597680","https://openalex.org/W2151138761","https://openalex.org/W2093471820","https://openalex.org/W1517228774"],"abstract_inverted_index":{"Temporal":[0],"classification,":[1],"such":[2,46],"as":[3],"activity":[4],"recognition,":[5],"is":[6,101],"a":[7,58,116],"key":[8],"component":[9],"for":[10,56,71,105],"creating":[11],"intelligent":[12],"robot":[13],"systems.":[14],"In":[15,90],"the":[16,79,84,130,145],"case":[17],"of":[18,31,61,87,133],"robots,":[19],"classification":[20,131],"algorithms":[21],"must":[22],"robustly":[23],"incorporate":[24,45],"complex,":[25],"non-independent":[26],"features":[27,62,82],"extracted":[28],"from":[29,63,115,122],"streams":[30],"sensor":[32,66],"data.":[33],"Conditional":[34],"random":[35,110],"fields":[36],"are":[37],"discriminatively":[38],"trained":[39,135,167],"temporal":[40,88],"models":[41,75,134,166],"that":[42,76,95,128],"can":[43],"easily":[44],"features.":[47],"However,":[48],"robots":[49,127],"have":[50],"few":[51],"computational":[52,85],"resources":[53],"to":[54,157],"spare":[55],"computing":[57],"large":[59],"number":[60],"high":[64],"bandwidth":[65],"data,":[67],"which":[68,142,155],"creates":[69],"opportunities":[70],"feature":[72,106,163],"selection.":[73],"Creating":[74],"contain":[77],"only":[78],"most":[80],"relevant":[81],"reduces":[83],"burden":[86],"classification.":[89],"this":[91],"paper,":[92],"we":[93],"show":[94],"lscr":[96,137,150],"1":[99,140],"regularization":[100],"an":[102],"effective":[103],"technique":[104],"selection":[107],"in":[108],"conditional":[109],"fields.":[111],"We":[112],"present":[113],"results":[114],"multi-robot":[117],"tag":[118],"domain":[119],"with":[120,136,168],"data":[121],"both":[123],"real":[124],"and":[125,147,165],"simulated":[126],"compare":[129],"accuracy":[132],"regularization,":[141,154],"simultaneously":[143],"smoothes":[144,156],"model":[146],"selects":[148],"features;":[149],"xmlns:xlink=\"http://www.w3.org/1999/xlink\">2":[153],"avoid":[158],"over-fitting,":[159],"but":[160],"performs":[161],"no":[162,169],"selection;":[164],"smoothing.":[170]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2172256479","counts_by_year":[{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":3},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":3},{"year":2015,"cited_by_count":4},{"year":2014,"cited_by_count":3},{"year":2013,"cited_by_count":6},{"year":2012,"cited_by_count":6}],"updated_date":"2024-11-28T21:09:51.687287","created_date":"2016-06-24"}