{"id":"https://openalex.org/W4285815036","doi":"https://doi.org/10.1109/ipsn54338.2022.00028","title":"VMA: Domain Variance- and Modality-Aware Model Transfer for Fine-Grained Occupant Activity Recognition","display_name":"VMA: Domain Variance- and Modality-Aware Model Transfer for Fine-Grained Occupant Activity Recognition","publication_year":2022,"publication_date":"2022-05-01","ids":{"openalex":"https://openalex.org/W4285815036","doi":"https://doi.org/10.1109/ipsn54338.2022.00028"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ipsn54338.2022.00028","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5012389116","display_name":"Zhizhang Hu","orcid":"https://orcid.org/0000-0002-3823-4406"},"institutions":[{"id":"https://openalex.org/I156087764","display_name":"University of California, Merced","ror":"https://ror.org/00d9ah105","country_code":"US","type":"funder","lineage":["https://openalex.org/I156087764"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhizhang Hu","raw_affiliation_strings":["Univ. of California Merced, Merced, California, USA"],"affiliations":[{"raw_affiliation_string":"Univ. of California Merced, Merced, California, USA","institution_ids":["https://openalex.org/I156087764"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100333764","display_name":"Yue Zhang","orcid":"https://orcid.org/0000-0002-9890-8935"},"institutions":[{"id":"https://openalex.org/I156087764","display_name":"University of California, Merced","ror":"https://ror.org/00d9ah105","country_code":"US","type":"funder","lineage":["https://openalex.org/I156087764"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yue Zhang","raw_affiliation_strings":["Univ. of California Merced, Merced, California, USA"],"affiliations":[{"raw_affiliation_string":"Univ. of California Merced, Merced, California, USA","institution_ids":["https://openalex.org/I156087764"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100767817","display_name":"Tong Yu","orcid":null},"institutions":[{"id":"https://openalex.org/I1306409833","display_name":"Adobe Systems (United States)","ror":"https://ror.org/059tvcg64","country_code":"US","type":"funder","lineage":["https://openalex.org/I1306409833"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tong Yu","raw_affiliation_strings":["Adobe Research, San Jose, California, USA"],"affiliations":[{"raw_affiliation_string":"Adobe Research, San Jose, California, USA","institution_ids":["https://openalex.org/I1306409833"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5050975451","display_name":"Shijia Pan","orcid":"https://orcid.org/0000-0002-3226-2318"},"institutions":[{"id":"https://openalex.org/I156087764","display_name":"University of California, Merced","ror":"https://ror.org/00d9ah105","country_code":"US","type":"funder","lineage":["https://openalex.org/I156087764"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shijia Pan","raw_affiliation_strings":["Univ. of California Merced, Merced, California, USA"],"affiliations":[{"raw_affiliation_string":"Univ. of California Merced, Merced, California, USA","institution_ids":["https://openalex.org/I156087764"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.401,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.520866,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"259","last_page":"270"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9282,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9171,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/factor","display_name":"Factor (programming language)","score":0.541531}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.831328},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.8306279},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.671092},{"id":"https://openalex.org/C2781039887","wikidata":"https://www.wikidata.org/wiki/Q1391724","display_name":"Factor (programming language)","level":2,"score":0.541531},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5052586},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46909225},{"id":"https://openalex.org/C2776175482","wikidata":"https://www.wikidata.org/wiki/Q1195816","display_name":"Transfer (computing)","level":2,"score":0.45161015},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.41812742},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4031909},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34933025},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08106953},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ipsn54338.2022.00028","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.46}],"grants":[{"funder":"https://openalex.org/F4320310688","funder_display_name":"Center for Information Technology Research in the Interest of Society","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W1498436455","https://openalex.org/W1503398984","https://openalex.org/W1510372458","https://openalex.org/W1522301498","https://openalex.org/W1533861849","https://openalex.org/W2049290701","https://openalex.org/W2060277733","https://openalex.org/W2076866786","https://openalex.org/W2095396347","https://openalex.org/W2095705004","https://openalex.org/W2130287054","https://openalex.org/W2131953535","https://openalex.org/W2149946238","https://openalex.org/W2158449659","https://openalex.org/W2255288227","https://openalex.org/W2313879745","https://openalex.org/W2428043126","https://openalex.org/W2518714219","https://openalex.org/W2610740816","https://openalex.org/W2751594996","https://openalex.org/W2771251325","https://openalex.org/W2785232201","https://openalex.org/W2786808285","https://openalex.org/W2888386112","https://openalex.org/W2897482938","https://openalex.org/W2913340405","https://openalex.org/W2927635891","https://openalex.org/W2963214104","https://openalex.org/W2963285578","https://openalex.org/W2965144482","https://openalex.org/W2985598901","https://openalex.org/W2995669151","https://openalex.org/W3011113468","https://openalex.org/W3044326989","https://openalex.org/W3047422066","https://openalex.org/W3086286710","https://openalex.org/W3093526239","https://openalex.org/W3111021054","https://openalex.org/W3119635706","https://openalex.org/W3174812227","https://openalex.org/W4233045210"],"related_works":["https://openalex.org/W3186538219","https://openalex.org/W2810752900","https://openalex.org/W2785900585","https://openalex.org/W2609066826","https://openalex.org/W2531295127","https://openalex.org/W2490303674","https://openalex.org/W2402761219","https://openalex.org/W2365677836","https://openalex.org/W2353730437","https://openalex.org/W2012531322"],"abstract_inverted_index":{"The":[0],"growth":[1],"of":[2,5,15,41,49,201],"the":[3,33,76,92,95,110,115,147,184,190,213,226],"Internet":[4],"Things":[6],"(IoT)":[7],"sensing":[8,137,168,199],"systems":[9],"leads":[10],"to":[11,94,123,154,171,189,211,223,241],"a":[12,130,197,218,234],"large":[13],"number":[14],"multimodal":[16,135],"datasets":[17,43,153,210],"over":[18],"different":[19,36],"deployments.":[20],"Labeling":[21],"costs":[22],"for":[23,134,176],"these":[24,42],"datasets,":[25],"especially":[26],"fine-grained":[27,191],"labels,":[28],"are":[29],"often":[30,118],"tremendous.":[31],"On":[32],"other":[34,162],"hand,":[35],"data":[37,138],"distributions":[38],"(domain":[39],"variance)":[40],"prevent":[44],"models":[45],"built":[46],"with":[47,161,196,229,245],"labels":[48],"one":[50,69,101],"dataset":[51,159],"(source":[52],"domain)":[53],"from":[54],"being":[55],"directly":[56],"used":[57],"in":[58,75,183],"another":[59],"(target":[60],"domain).":[61],"This":[62],"domain":[63,96,125,142,149,157,174,228,231],"variance":[64,97,150,158,175],"may":[65],"be":[66],"caused":[67,98],"by":[68,99,179],"or":[70,82],"more":[71,182],"physical":[72,102],"factors":[73,107],"change":[74,108],"deployments,":[77],"such":[78],"as":[79],"buildings":[80],"and/":[81],"people.":[83],"Existing":[84],"model":[85,93,116,131,219],"transfer":[86,117,132,220],"studies":[87],"mainly":[88],"focus":[89],"on":[90,225],"adapting":[91],"only":[100],"factor":[103],"change.":[104],"When":[105],"multiple":[106,155],"between":[109,151],"source":[111],"and":[112,204,236,246],"target":[113,227],"domains,":[114],"yields":[119],"low":[120],"accuracy":[121,221],"due":[122],"significant":[124],"variance.":[126,143],"We":[127,186,207],"present":[128],"VMA,":[129],"framework":[133],"IoT":[136],"that":[139],"handles":[140],"multi-factor":[141,148,230],"VMA":[144,166,188,216],"first":[145],"decouples":[146],"two":[152],"single-factor":[156,173],"pairs":[160],"available":[163],"datasets.":[164],"Then,":[165],"leverages":[167],"modalities":[169],"robust":[170],"each":[172],"accurate":[177],"prediction":[178,243],"weighing":[180],"them":[181],"fusion.":[185],"apply":[187],"occupant":[192],"activity":[193],"recognition":[194],"application":[195],"multi-modal":[198],"system":[200],"structural":[202],"vibration":[203],"wearable":[205],"IMU.":[206],"collect":[208],"real-world":[209],"evaluate":[212],"proposed":[214],"framework.":[215],"achieves":[217],"up":[222],"76.1%":[224],"variance,":[232],"demonstrating":[233],"1.6x":[235],"1.9x":[237],"error":[238],"reduction":[239],"compared":[240],"direct":[242],"baselines":[244],"without":[247],"modality-aware":[248],"learning":[249],"design.":[250]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285815036","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":2}],"updated_date":"2025-03-22T13:06:43.746736","created_date":"2022-07-19"}