{"id":"https://openalex.org/W2768154471","doi":"https://doi.org/10.1109/ipin.2017.8115896","title":"Analysis of floor map image in information board for indoor navigation","display_name":"Analysis of floor map image in information board for indoor navigation","publication_year":2017,"publication_date":"2017-09-01","ids":{"openalex":"https://openalex.org/W2768154471","doi":"https://doi.org/10.1109/ipin.2017.8115896","mag":"2768154471"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ipin.2017.8115896","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5060409248","display_name":"Tomoya Honto","orcid":null},"institutions":[{"id":"https://openalex.org/I201537933","display_name":"Tohoku University","ror":"https://ror.org/01dq60k83","country_code":"JP","type":"education","lineage":["https://openalex.org/I201537933"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tomoya Honto","raw_affiliation_strings":["Department of Communications Engineering, Tohoku University, Sendai, Japan"],"affiliations":[{"raw_affiliation_string":"Department of Communications Engineering, Tohoku University, Sendai, Japan","institution_ids":["https://openalex.org/I201537933"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029206786","display_name":"Yoshihiro Sugaya","orcid":"https://orcid.org/0000-0003-3704-4309"},"institutions":[{"id":"https://openalex.org/I201537933","display_name":"Tohoku University","ror":"https://ror.org/01dq60k83","country_code":"JP","type":"education","lineage":["https://openalex.org/I201537933"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yoshihiro Sugaya","raw_affiliation_strings":["Department of Communications Engineering, Tohoku University, Sendai, Japan"],"affiliations":[{"raw_affiliation_string":"Department of Communications Engineering, Tohoku University, Sendai, Japan","institution_ids":["https://openalex.org/I201537933"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009192524","display_name":"Tomo Miyazaki","orcid":"https://orcid.org/0000-0001-5205-0542"},"institutions":[{"id":"https://openalex.org/I201537933","display_name":"Tohoku University","ror":"https://ror.org/01dq60k83","country_code":"JP","type":"education","lineage":["https://openalex.org/I201537933"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Tomo Miyazaki","raw_affiliation_strings":["Department of Communications Engineering, Tohoku University, Sendai, Japan"],"affiliations":[{"raw_affiliation_string":"Department of Communications Engineering, Tohoku University, Sendai, Japan","institution_ids":["https://openalex.org/I201537933"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5020830042","display_name":"Shinichiro Omachi","orcid":"https://orcid.org/0000-0001-7706-9995"},"institutions":[{"id":"https://openalex.org/I201537933","display_name":"Tohoku University","ror":"https://ror.org/01dq60k83","country_code":"JP","type":"education","lineage":["https://openalex.org/I201537933"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Shinichiro Omachi","raw_affiliation_strings":["Department of Communications Engineering, Tohoku University, Sendai, Japan"],"affiliations":[{"raw_affiliation_string":"Department of Communications Engineering, Tohoku University, Sendai, Japan","institution_ids":["https://openalex.org/I201537933"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.304,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.559345,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":77},"biblio":{"volume":"23","issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13282","display_name":"Automated Road and Building Extraction","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.7361147},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72362673},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7230359},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.6280789},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.61101437},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.49668366},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.4779175},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35203624},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13184616},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ipin.2017.8115896","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.53},{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.4}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W174886880","https://openalex.org/W2034782889","https://openalex.org/W2104095591","https://openalex.org/W2108422006","https://openalex.org/W2124351162","https://openalex.org/W2145023731","https://openalex.org/W2169551590","https://openalex.org/W2203676611","https://openalex.org/W2501648206","https://openalex.org/W2505173351","https://openalex.org/W2549810301","https://openalex.org/W2556403602","https://openalex.org/W2739015747"],"related_works":["https://openalex.org/W4301594054","https://openalex.org/W3125889879","https://openalex.org/W3125188128","https://openalex.org/W3124422538","https://openalex.org/W3046451053","https://openalex.org/W2794488505","https://openalex.org/W2295467472","https://openalex.org/W2144398666","https://openalex.org/W2097909533","https://openalex.org/W1972035260"],"abstract_inverted_index":{"Various":[0],"indoor":[1,12,20],"navigation":[2,21],"methods":[3,186],"have":[4],"been":[5,30],"developed":[6],"recently,":[7],"but":[8],"digitalized":[9],"data":[10],"of":[11,26,44,76,89,108,137],"map":[13,39,71,103,152],"is":[14,48,63,68,79,83],"not":[15],"always":[16],"available.":[17],"Therefore,":[18,92],"an":[19,24,45],"framework":[22],"using":[23],"image":[25,43,107],"information":[27,46,67,109],"board":[28,47,110],"has":[29],"proposed.":[31],"In":[32,126,161],"this":[33,94],"method,":[34,128],"the":[35,42,57,74,106,123,135,143,184],"process":[36,58],"to":[37,50,59,101,133,142,170],"extract":[38,102,150],"regions":[40,62,104,132,173,176],"from":[41,105,177],"necessary":[49],"be":[51],"done":[52],"by":[53,191],"hands":[54],"beforehand,":[55],"and":[56,119,174,189],"estimate":[60],"passageway":[61,77,172],"important":[64],"because":[65],"its":[66],"used":[69],"in":[70,93,157],"matching.":[72],"However,":[73],"method":[75,100,118,121,148,169],"discrimination":[78],"very":[80],"heuristic,":[81],"which":[82],"intended":[84],"for":[85,122],"a":[86,98,151,165,178],"specific":[87],"type":[88],"floor":[90],"maps.":[91],"paper,":[95],"we":[96,129,163],"propose":[97,164],"semi-automatic":[99],"with":[111,154],"simple":[112],"user's":[113],"operation.":[114],"We":[115,181],"use":[116],"GrabCut":[117,127,141],"Snakes":[120],"extraction":[124],"method.":[125],"detect":[130],"closed":[131],"prevent":[134],"degradation":[136],"accuracy":[138],"when":[139],"conducting":[140],"downsizing":[144],"image.":[145,180],"The":[146],"proposed":[147,185],"can":[149],"region":[153],"few":[155],"deficits":[156],"short":[158],"calculation":[159],"time.":[160],"addition,":[162],"machine":[166],"learning":[167],"based":[168],"classify":[171],"other":[175],"segment":[179],"confirmed":[182],"that":[183],"are":[187],"effective":[188],"promising":[190],"experiments.":[192]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2768154471","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2025-01-21T19:24:05.185411","created_date":"2017-12-04"}