{"id":"https://openalex.org/W2534285188","doi":"https://doi.org/10.1109/indcomp.2014.7011760","title":"Exercise prescription formulating scheme based on a two-layer K-means classifier","display_name":"Exercise prescription formulating scheme based on a two-layer K-means classifier","publication_year":2014,"publication_date":"2014-12-01","ids":{"openalex":"https://openalex.org/W2534285188","doi":"https://doi.org/10.1109/indcomp.2014.7011760","mag":"2534285188"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/indcomp.2014.7011760","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103183194","display_name":"Shyr-Shen Yu","orcid":"https://orcid.org/0000-0001-5711-5018"},"institutions":[{"id":"https://openalex.org/I162838928","display_name":"National Chung Hsing University","ror":"https://ror.org/05vn3ca78","country_code":"TW","type":"education","lineage":["https://openalex.org/I162838928"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Shyr-Shen Yu","raw_affiliation_strings":["National Chung Hsing University, Taichung, TW"],"affiliations":[{"raw_affiliation_string":"National Chung Hsing University, Taichung, TW","institution_ids":["https://openalex.org/I162838928"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103717150","display_name":"Ching-Hua Chiu","orcid":null},"institutions":[{"id":"https://openalex.org/I162838928","display_name":"National Chung Hsing University","ror":"https://ror.org/05vn3ca78","country_code":"TW","type":"education","lineage":["https://openalex.org/I162838928"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Ching-Hua Chiu","raw_affiliation_strings":["National Chung Hsing University, Taichung, TW"],"affiliations":[{"raw_affiliation_string":"National Chung Hsing University, Taichung, TW","institution_ids":["https://openalex.org/I162838928"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020129162","display_name":"Chia\u2010Chi Liu","orcid":"https://orcid.org/0000-0003-0801-5234"},"institutions":[{"id":"https://openalex.org/I162838928","display_name":"National Chung Hsing University","ror":"https://ror.org/05vn3ca78","country_code":"TW","type":"education","lineage":["https://openalex.org/I162838928"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Chia-Chi Liu","raw_affiliation_strings":["National Chung Hsing University, Taichung, TW"],"affiliations":[{"raw_affiliation_string":"National Chung Hsing University, Taichung, TW","institution_ids":["https://openalex.org/I162838928"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083290494","display_name":"Yung\u2010Kuan Chan","orcid":"https://orcid.org/0000-0002-1556-0567"},"institutions":[{"id":"https://openalex.org/I162838928","display_name":"National Chung Hsing University","ror":"https://ror.org/05vn3ca78","country_code":"TW","type":"education","lineage":["https://openalex.org/I162838928"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Yung-Kuan Chan","raw_affiliation_strings":["National Chung Hsing University, Taichung, TW"],"affiliations":[{"raw_affiliation_string":"National Chung Hsing University, Taichung, TW","institution_ids":["https://openalex.org/I162838928"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5080454661","display_name":"Meng\u2010Hsiun Tsai","orcid":"https://orcid.org/0000-0003-2420-9178"},"institutions":[{"id":"https://openalex.org/I162838928","display_name":"National Chung Hsing University","ror":"https://ror.org/05vn3ca78","country_code":"TW","type":"education","lineage":["https://openalex.org/I162838928"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Meng-Hsiun Tsai","raw_affiliation_strings":["National Chung Hsing University, Taichung, TW"],"affiliations":[{"raw_affiliation_string":"National Chung Hsing University, Taichung, TW","institution_ids":["https://openalex.org/I162838928"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.188,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.473837,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":66,"max":73},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10352","display_name":"Physical Activity and Health","score":0.8936,"subfield":{"id":"https://openalex.org/subfields/2737","display_name":"Physiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10352","display_name":"Physical Activity and Health","score":0.8936,"subfield":{"id":"https://openalex.org/subfields/2737","display_name":"Physiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T13522","display_name":"Cardiovascular Health and Risk Factors","score":0.8338,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.7726,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/centroid","display_name":"Centroid","score":0.43231148}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6868363},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.6814248},{"id":"https://openalex.org/C2426938","wikidata":"https://www.wikidata.org/wiki/Q3355478","display_name":"Medical prescription","level":2,"score":0.553353},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52258384},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.50670654},{"id":"https://openalex.org/C176066374","wikidata":"https://www.wikidata.org/wiki/Q629118","display_name":"Fitness function","level":3,"score":0.46098644},{"id":"https://openalex.org/C146599234","wikidata":"https://www.wikidata.org/wiki/Q511093","display_name":"Centroid","level":2,"score":0.43231148},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.42195767},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42095035},{"id":"https://openalex.org/C8880873","wikidata":"https://www.wikidata.org/wiki/Q187787","display_name":"Genetic algorithm","level":2,"score":0.42085087},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.07019788},{"id":"https://openalex.org/C98274493","wikidata":"https://www.wikidata.org/wiki/Q128406","display_name":"Pharmacology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/indcomp.2014.7011760","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1497256448","https://openalex.org/W1565377632","https://openalex.org/W1994210784","https://openalex.org/W2075539754","https://openalex.org/W2076884803","https://openalex.org/W2076944537","https://openalex.org/W2125452930","https://openalex.org/W2127218421","https://openalex.org/W2182035425","https://openalex.org/W2185690639","https://openalex.org/W2482589566","https://openalex.org/W4213121121","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W2378719652","https://openalex.org/W2370837632","https://openalex.org/W2326694407","https://openalex.org/W2164831575","https://openalex.org/W2151191523","https://openalex.org/W2115729582","https://openalex.org/W2106492215","https://openalex.org/W2094658154","https://openalex.org/W2082859007","https://openalex.org/W115238348"],"abstract_inverted_index":{"An":[0],"excersice":[1,7,26,72,90,127,232],"prescription":[2,27,73,91,128],"is":[3,28,40,55,66,111,139,183],"a":[4,44,98,180],"professionally":[5],"designed":[6],"plan":[8],"for":[9,76,92,129],"improving":[10],"one's":[11],"health":[12],"according":[13],"to":[14,57,68,114,185],"the":[15,33,78,87,102,116,124,133,142,145,153,169,187,199,204,208,216,224],"results":[16,213],"of":[17,36,81,104,119,144,172,189,203,227],"his":[18],"health-related":[19,51],"physical":[20,52],"fitness":[21,53],"(HRPF)":[22],"tests.":[23],"Traditionally,":[24],"an":[25,70],"formulated":[29],"by":[30],"manually":[31],"checking":[32],"norm-referenced":[34],"chart":[35],"HRPF;":[37],"however,":[38],"it":[39,65],"time":[41],"consuming":[42],"and":[43,47,84,108,122,166,198,221,230],"highly":[45],"specialized":[46],"experienced":[48],"expert":[49],"on":[50],"testing":[54],"needed":[56],"formulate":[58],"this":[59,96,178],"prescription.":[60],"To":[61],"solve":[62],"above":[63],"problems,":[64],"necessary":[67],"develope":[69],"automatic":[71],"formulating":[74],"scheme":[75],"categorizing":[77],"measured":[79,117,170,225],"data":[80,118,134,171,226],"HRPF":[82,120,173,228],"tests":[83,121,174,229],"then":[85,167],"assign":[86],"best":[88,125,200],"appopriate":[89,126],"each":[93,130,150,160,192],"class.":[94,131,154],"In":[95,177],"study,":[97,179],"two-layer":[99,156,209,217],"classifier,":[100],"integrating":[101],"techiques":[103],"K-means":[105],"clustering":[106],"algorithm":[107,182],"genetic":[109,181],"algorithm,":[110],"hence":[112],"propsed":[113],"classify":[115,223],"provide":[123],"When":[132],"variance":[135],"within":[136],"one":[137],"class":[138,146,161,193],"very":[140],"large,":[141],"centroid":[143],"cannot":[147],"effectively":[148,220],"represent":[149],"datum":[151],"in":[152,207],"The":[155,211],"classifier":[157,218],"therefore":[158],"partitions":[159],"into":[162,175],"several":[163],"clusters":[164],"(subclasses)":[165],"classifiy":[168],"clusters.":[176],"provided":[184],"determine":[186],"number":[188],"clusters,":[190],"which":[191],"should":[194],"be":[195],"separated":[196],"into,":[197],"suitable":[201],"values":[202],"parameters":[205],"used":[206],"classifier.":[210],"experimental":[212],"demonstrate":[214],"that":[215],"can":[219],"efficiently":[222],"design":[231],"plan.":[233]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2534285188","counts_by_year":[{"year":2017,"cited_by_count":1}],"updated_date":"2024-12-15T22:38:12.263218","created_date":"2016-10-28"}