{"id":"https://openalex.org/W4313139626","doi":"https://doi.org/10.1109/ijcnn55064.2022.9892923","title":"MTAP-DK: Multivariate Time-Series Anomaly Prediction with Domain Knowledge","display_name":"MTAP-DK: Multivariate Time-Series Anomaly Prediction with Domain Knowledge","publication_year":2022,"publication_date":"2022-07-18","ids":{"openalex":"https://openalex.org/W4313139626","doi":"https://doi.org/10.1109/ijcnn55064.2022.9892923"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn55064.2022.9892923","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076861938","display_name":"Liang Xue","orcid":"https://orcid.org/0000-0002-4787-9855"},"institutions":[{"id":"https://openalex.org/I154099455","display_name":"Shandong University","ror":"https://ror.org/0207yh398","country_code":"CN","type":"education","lineage":["https://openalex.org/I154099455"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Liang Xue","raw_affiliation_strings":["Shandong University, Qingdao, China"],"affiliations":[{"raw_affiliation_string":"Shandong University, Qingdao, China","institution_ids":["https://openalex.org/I154099455"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101523367","display_name":"Zhaohui Peng","orcid":"https://orcid.org/0000-0002-1296-2114"},"institutions":[{"id":"https://openalex.org/I154099455","display_name":"Shandong University","ror":"https://ror.org/0207yh398","country_code":"CN","type":"education","lineage":["https://openalex.org/I154099455"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhaohui Peng","raw_affiliation_strings":["Shandong University, Qingdao, China"],"affiliations":[{"raw_affiliation_string":"Shandong University, Qingdao, China","institution_ids":["https://openalex.org/I154099455"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100349786","display_name":"Jiaqi Zhang","orcid":"https://orcid.org/0000-0001-7442-6694"},"institutions":[{"id":"https://openalex.org/I154099455","display_name":"Shandong University","ror":"https://ror.org/0207yh398","country_code":"CN","type":"education","lineage":["https://openalex.org/I154099455"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiaqi Zhang","raw_affiliation_strings":["Shandong University, Qingdao, China"],"affiliations":[{"raw_affiliation_string":"Shandong University, Qingdao, China","institution_ids":["https://openalex.org/I154099455"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101638388","display_name":"Fangjun Wang","orcid":"https://orcid.org/0000-0002-0925-001X"},"institutions":[{"id":"https://openalex.org/I154099455","display_name":"Shandong University","ror":"https://ror.org/0207yh398","country_code":"CN","type":"education","lineage":["https://openalex.org/I154099455"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fangjun Wang","raw_affiliation_strings":["Shandong University, Qingdao, China"],"affiliations":[{"raw_affiliation_string":"Shandong University, Qingdao, China","institution_ids":["https://openalex.org/I154099455"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055332094","display_name":"Yilin Wang","orcid":"https://orcid.org/0000-0003-2212-5747"},"institutions":[{"id":"https://openalex.org/I154099455","display_name":"Shandong University","ror":"https://ror.org/0207yh398","country_code":"CN","type":"education","lineage":["https://openalex.org/I154099455"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yilin Wang","raw_affiliation_strings":["Shandong University, Qingdao, China"],"affiliations":[{"raw_affiliation_string":"Shandong University, Qingdao, China","institution_ids":["https://openalex.org/I154099455"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9356,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/knowledge-graph","display_name":"Knowledge graph","score":0.46057367},{"id":"https://openalex.org/keywords/domain-engineering","display_name":"Domain engineering","score":0.4200612},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.4160439}],"concepts":[{"id":"https://openalex.org/C207685749","wikidata":"https://www.wikidata.org/wiki/Q2088941","display_name":"Domain knowledge","level":2,"score":0.7877493},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.74970657},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.5951615},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5424119},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.53029376},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.51512045},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.50636995},{"id":"https://openalex.org/C120567893","wikidata":"https://www.wikidata.org/wiki/Q1582085","display_name":"Knowledge extraction","level":2,"score":0.50549126},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.5015471},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.4746119},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.46238866},{"id":"https://openalex.org/C2987255567","wikidata":"https://www.wikidata.org/wiki/Q33002955","display_name":"Knowledge graph","level":2,"score":0.46057367},{"id":"https://openalex.org/C5977032","wikidata":"https://www.wikidata.org/wiki/Q5289815","display_name":"Domain engineering","level":5,"score":0.4200612},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.4160439},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.4111543},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.34099936},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.15904555},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.10793552},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.099202424},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C174683762","wikidata":"https://www.wikidata.org/wiki/Q609588","display_name":"Component-based software engineering","level":4,"score":0.0},{"id":"https://openalex.org/C2777904410","wikidata":"https://www.wikidata.org/wiki/Q7397","display_name":"Software","level":2,"score":0.0},{"id":"https://openalex.org/C149091818","wikidata":"https://www.wikidata.org/wiki/Q2429814","display_name":"Software system","level":3,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn55064.2022.9892923","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.41}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62072282"}],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1485009520","https://openalex.org/W1959608418","https://openalex.org/W2064675550","https://openalex.org/W2537810077","https://openalex.org/W2604847698","https://openalex.org/W2911200746","https://openalex.org/W2950361482","https://openalex.org/W2962736999","https://openalex.org/W2963166639","https://openalex.org/W2987793235","https://openalex.org/W2997982033","https://openalex.org/W3004207920","https://openalex.org/W3034826934","https://openalex.org/W3080253043","https://openalex.org/W3081497074","https://openalex.org/W3093787659","https://openalex.org/W3098124682","https://openalex.org/W3105324058","https://openalex.org/W3106543020","https://openalex.org/W3118519050","https://openalex.org/W3128634608","https://openalex.org/W3133340673","https://openalex.org/W3179098719","https://openalex.org/W3216736864","https://openalex.org/W4297733535","https://openalex.org/W4297814361"],"related_works":["https://openalex.org/W4292070284","https://openalex.org/W4243448361","https://openalex.org/W4239551281","https://openalex.org/W4234690372","https://openalex.org/W2357854711","https://openalex.org/W2111524952","https://openalex.org/W2054759342","https://openalex.org/W2051700896","https://openalex.org/W2041195395","https://openalex.org/W1552255772"],"abstract_inverted_index":{"Predicting":[0],"anomalies":[1],"of":[2,32,38,83],"mobile":[3],"equipment":[4],"plays":[5],"an":[6],"important":[7],"role":[8],"in":[9],"performing":[10],"preventive":[11],"maintenance,":[12],"alleviating":[13],"major":[14],"economic":[15],"losses":[16],"and":[17,47,107,162,174,217],"personal":[18],"safety":[19],"issues.":[20,137],"Previous":[21],"studies":[22],"basically":[23],"adopted":[24],"data-driven":[25],"models":[26,60,114],"for":[27],"anomaly":[28],"prediction":[29,208],"or":[30],"detection":[31],"industrial":[33],"equipment,":[34,85],"ignoring":[35],"the":[36,50,57,69,73,80,84,97,149,155,159,176,181,190,201,207,212,218,225],"importance":[37],"domain":[39,42,62,74,101,150,160,169],"knowledge.":[40],"The":[41],"knowledge":[43,63,75,92,102,143,161,182,204],"can":[44,147],"more":[45],"accurately":[46],"theoretically":[48],"capture":[49],"complex":[51],"relationship":[52,191],"among":[53,192],"features.":[54,193],"However,":[55],"building":[56],"deep":[58,112],"learning":[59,113],"incorporating":[61,203],"is":[64,76,88,103,209,221],"very":[65],"difficult":[66,89,104],"due":[67,115],"to":[68,90,96,105,111,116,134,154,172,184,188,224],"following":[70],"challenges.":[71],"First,":[72],"often":[77],"different":[78],"from":[79,180],"actual":[81,156],"state":[82],"so":[86],"it":[87],"obtain":[91],"information":[93,220],"that":[94,152],"conforms":[95],"real":[98],"situation.":[99],"Second,":[100],"directly":[106],"effectively":[108],"be":[109],"applied":[110],"its":[117,186],"diverse":[118],"representations.":[119],"In":[120],"this":[121],"paper,":[122],"we":[123,139,166,195],"propose":[124,141],"a":[125,142,168],"Multivariate":[126],"Time-Series":[127],"Anomaly":[128],"Prediction":[129],"with":[130,158],"Domain":[131],"Knowledge":[132],"(MTAP-DK)":[133],"address":[135],"these":[136],"Specifically,":[138],"firstly":[140],"extraction":[144],"module,":[145],"which":[146],"extract":[148],"equations":[151],"conform":[153],"situation":[157],"historical":[163],"data.":[164],"Secondly,":[165],"design":[167],"guidance":[170],"module":[171],"guide":[173],"constrain":[175],"graph":[177,202],"neural":[178],"network":[179],"level,":[183],"improve":[185],"capabilities":[187],"express":[189],"Thirdly,":[194],"predict":[196],"future":[197],"data":[198],"based":[199],"on":[200],"information.":[205],"Finally,":[206],"reconstructed":[210],"by":[211],"multi-scale":[213],"convolution":[214],"reconstruction":[215,226],"method,":[216],"abnormal":[219],"inferred":[222],"according":[223],"error.":[227]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313139626","counts_by_year":[],"updated_date":"2024-12-16T01:56:39.896875","created_date":"2023-01-06"}