{"id":"https://openalex.org/W4312981033","doi":"https://doi.org/10.1109/ijcnn55064.2022.9892572","title":"Robust Two-stage Graph Convolutional Network for Face Clustering","display_name":"Robust Two-stage Graph Convolutional Network for Face Clustering","publication_year":2022,"publication_date":"2022-07-18","ids":{"openalex":"https://openalex.org/W4312981033","doi":"https://doi.org/10.1109/ijcnn55064.2022.9892572"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn55064.2022.9892572","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5033386698","display_name":"Guanqun Hou","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guanqun Hou","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101926925","display_name":"Fan Deng","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fan Deng","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108459696","display_name":"Xinjia Chen","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinjia Chen","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059673740","display_name":"Haixian Lu","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haixian Lu","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100615417","display_name":"Jun Che","orcid":"https://orcid.org/0000-0003-0013-3340"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Che","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085955762","display_name":"Shiliang Pu","orcid":"https://orcid.org/0000-0001-5269-7821"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shiliang Pu","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.185,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.306049,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":75},"biblio":{"volume":null,"issue":null,"first_page":"01","last_page":"08"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10828","display_name":"Biometric Identification and Security","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/data-stream-clustering","display_name":"Data stream clustering","score":0.43499306},{"id":"https://openalex.org/keywords/brown-clustering","display_name":"Brown clustering","score":0.4343629},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4335943}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.88965154},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.703925},{"id":"https://openalex.org/C94641424","wikidata":"https://www.wikidata.org/wiki/Q5172845","display_name":"Correlation clustering","level":3,"score":0.6367097},{"id":"https://openalex.org/C33704608","wikidata":"https://www.wikidata.org/wiki/Q5014717","display_name":"CURE data clustering algorithm","level":4,"score":0.5665322},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.54643327},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53775954},{"id":"https://openalex.org/C104047586","wikidata":"https://www.wikidata.org/wiki/Q5033439","display_name":"Canopy clustering algorithm","level":4,"score":0.5117636},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.5101869},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.47000653},{"id":"https://openalex.org/C193143536","wikidata":"https://www.wikidata.org/wiki/Q5227360","display_name":"Data stream clustering","level":5,"score":0.43499306},{"id":"https://openalex.org/C167984511","wikidata":"https://www.wikidata.org/wiki/Q17003931","display_name":"Brown clustering","level":5,"score":0.4343629},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4335943},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.40507132},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.16162741},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn55064.2022.9892572","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.58,"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1993962865","https://openalex.org/W2011430131","https://openalex.org/W2072240081","https://openalex.org/W2096733369","https://openalex.org/W2120636855","https://openalex.org/W2139906443","https://openalex.org/W2145287260","https://openalex.org/W2150593711","https://openalex.org/W2165835468","https://openalex.org/W2169827072","https://openalex.org/W2341251094","https://openalex.org/W2471768434","https://openalex.org/W2515770085","https://openalex.org/W2736633948","https://openalex.org/W2889960480","https://openalex.org/W2930556772","https://openalex.org/W2948398419","https://openalex.org/W2953791858","https://openalex.org/W2963084622","https://openalex.org/W2963355595","https://openalex.org/W2963861381","https://openalex.org/W2964732194","https://openalex.org/W2965744772","https://openalex.org/W2969985801","https://openalex.org/W3034303554","https://openalex.org/W3034363127","https://openalex.org/W3035028247","https://openalex.org/W3035669277","https://openalex.org/W3099744893","https://openalex.org/W3173718098"],"related_works":["https://openalex.org/W4226410418","https://openalex.org/W4200404937","https://openalex.org/W3217529043","https://openalex.org/W3197105638","https://openalex.org/W3192757256","https://openalex.org/W3099482891","https://openalex.org/W2479830597","https://openalex.org/W2004209105","https://openalex.org/W1989337993","https://openalex.org/W1957537378"],"abstract_inverted_index":{"Face":[0],"clustering":[1,38,69,95,156,184],"has":[2],"been":[3],"widely":[4],"studied,":[5],"due":[6],"to":[7,71,111,115],"its":[8,133],"broad":[9],"applications":[10],"in":[11,79,176],"academia":[12],"and":[13,33,52,92,132,136,152,192],"industry.":[14],"Regarding":[15],"researches":[16,45],"on":[17,49,159,187],"clustering,":[18],"two":[19,147,188],"vital":[20],"parts":[21],"are":[22],"involved:":[23],"one":[24,149,193],"is":[25,36,83,150,155,165],"the":[26,31,34,37,43,50,54,73,112,117,124,153,180,183,202],"feature":[27,59,87],"representation":[28,60],"space":[29,61],"of":[30,42,75,85,120,146,182],"image,":[32],"other":[35,154],"algorithm.":[39],"However,":[40],"most":[41],"current":[44],"lay":[46],"more":[47,138],"emphasis":[48],"latter":[51],"overlook":[53],"need":[55],"for":[56,62,141],"an":[57,93,166],"appropriate":[58],"clustering.":[63,80,142],"Therefore,":[64],"we":[65],"propose":[66],"a":[67,86,107],"novel":[68],"framework,":[70],"address":[72],"problem":[74],"insufficiently":[76],"compact":[77],"features":[78,140],"Our":[81,143],"method":[82,199],"comprised":[84],"topology":[88],"learning":[89,109],"module":[90,96,125,157],"(GCN-FT)":[91],"auto-search":[94],"(GCN-AS),":[97],"which":[98,170],"called":[99],"GCN-F&A":[100],"(GCN-FT":[101],"&":[102],"GCN-AS).":[103],"Specifically,":[104],"GCN-FT":[105],"adds":[106],"self-adaptive":[108],"structure":[110],"traditional":[113],"GCN":[114],"capture":[116],"internal":[118],"correlation":[119],"features,":[121],"so":[122],"that":[123,197],"can":[126,171],"better":[127],"aggregate":[128],"information":[129],"from":[130],"itself":[131],"neighbor":[134],"nodes,":[135],"provide":[137],"gathered":[139],"GCN-AS":[144],"consists":[145],"parts,":[148],"'1-NN',":[151],"based":[158],"linkage":[160],"prediction,":[161],"namely":[162],"'GCN-LP'.":[163],"1-NN":[164],"effective":[167],"pre-clustering":[168],"method,":[169],"automatically":[172],"search":[173],"hyper-parameters":[174],"required":[175],"GCN-LP,":[177],"thereby":[178],"improving":[179],"scalability":[181],"module.":[185],"Experiments":[186],"large-scale":[189],"face":[190],"benchmarks":[191],"clothing":[194],"dataset":[195],"demonstrate":[196],"our":[198],"significantly":[200],"outperforms":[201],"state-of-the-arts.":[203]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312981033","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-04-24T08:03:12.818627","created_date":"2023-01-05"}