{"id":"https://openalex.org/W4313055375","doi":"https://doi.org/10.1109/ijcnn55064.2022.9892432","title":"An Industry 4.0 example: real-time quality control for steel-based mass production using Machine Learning on non-invasive sensor data","display_name":"An Industry 4.0 example: real-time quality control for steel-based mass production using Machine Learning on non-invasive sensor data","publication_year":2022,"publication_date":"2022-07-18","ids":{"openalex":"https://openalex.org/W4313055375","doi":"https://doi.org/10.1109/ijcnn55064.2022.9892432"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn55064.2022.9892432","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://pure.rug.nl/ws/files/568069032/An_Industry_4.0_example_real_time_quality_control_for_steel_based_mass_production_using_Machine_Learning_on_non_invasive_sensor_data.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024785793","display_name":"Michiel Straat","orcid":"https://orcid.org/0000-0002-3832-978X"},"institutions":[{"id":"https://openalex.org/I169381384","display_name":"University of Groningen","ror":"https://ror.org/012p63287","country_code":"NL","type":"education","lineage":["https://openalex.org/I169381384"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Michiel Straat","raw_affiliation_strings":["Bernoulli Institute, University of Groningen, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Bernoulli Institute, University of Groningen, The Netherlands","institution_ids":["https://openalex.org/I169381384"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109577353","display_name":"Kevin Koster","orcid":null},"institutions":[{"id":"https://openalex.org/I4210122849","display_name":"Philips (Netherlands)","ror":"https://ror.org/02p2bgp27","country_code":"NL","type":"company","lineage":["https://openalex.org/I4210122849"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Kevin Koster","raw_affiliation_strings":["Philips Personal Health, MG Innovation DTN, Drachten, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Philips Personal Health, MG Innovation DTN, Drachten, The Netherlands","institution_ids":["https://openalex.org/I4210122849"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086264506","display_name":"Nick Goet","orcid":null},"institutions":[{"id":"https://openalex.org/I4210122849","display_name":"Philips (Netherlands)","ror":"https://ror.org/02p2bgp27","country_code":"NL","type":"company","lineage":["https://openalex.org/I4210122849"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Nick Goet","raw_affiliation_strings":["Philips Personal Health, MG Innovation DTN, Drachten, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Philips Personal Health, MG Innovation DTN, Drachten, The Netherlands","institution_ids":["https://openalex.org/I4210122849"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5030298766","display_name":"Kerstin Bunte","orcid":"https://orcid.org/0000-0002-2930-6172"},"institutions":[{"id":"https://openalex.org/I169381384","display_name":"University of Groningen","ror":"https://ror.org/012p63287","country_code":"NL","type":"education","lineage":["https://openalex.org/I169381384"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Kerstin Bunte","raw_affiliation_strings":["Bernoulli Institute, University of Groningen, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Bernoulli Institute, University of Groningen, The Netherlands","institution_ids":["https://openalex.org/I169381384"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.542,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":4,"citation_normalized_percentile":{"value":0.861415,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"01","last_page":"08"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12169","display_name":"Non-Destructive Testing Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12169","display_name":"Non-Destructive Testing Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12282","display_name":"Mineral Processing and Grinding","score":0.994,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9904,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/production-line","display_name":"Production line","score":0.5890639}],"concepts":[{"id":"https://openalex.org/C99862985","wikidata":"https://www.wikidata.org/wiki/Q10858068","display_name":"Production line","level":2,"score":0.5890639},{"id":"https://openalex.org/C2778348673","wikidata":"https://www.wikidata.org/wiki/Q739302","display_name":"Production (economics)","level":2,"score":0.5655893},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.5497034},{"id":"https://openalex.org/C112950240","wikidata":"https://www.wikidata.org/wiki/Q76005","display_name":"Ultimate tensile strength","level":2,"score":0.5223954},{"id":"https://openalex.org/C30403606","wikidata":"https://www.wikidata.org/wiki/Q2981904","display_name":"Electromagnetic coil","level":2,"score":0.49155673},{"id":"https://openalex.org/C106436119","wikidata":"https://www.wikidata.org/wiki/Q836575","display_name":"Quality assurance","level":3,"score":0.43980703},{"id":"https://openalex.org/C21880701","wikidata":"https://www.wikidata.org/wiki/Q2144042","display_name":"Process engineering","level":1,"score":0.43066078},{"id":"https://openalex.org/C31555180","wikidata":"https://www.wikidata.org/wiki/Q3523867","display_name":"Material properties","level":2,"score":0.4212335},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4166089},{"id":"https://openalex.org/C157764524","wikidata":"https://www.wikidata.org/wiki/Q1383412","display_name":"Throughput","level":3,"score":0.41654235},{"id":"https://openalex.org/C200601418","wikidata":"https://www.wikidata.org/wiki/Q2193887","display_name":"Reliability engineering","level":1,"score":0.39116403},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.36815655},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.30166212},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.21202466},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.12233895},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C2778618615","wikidata":"https://www.wikidata.org/wiki/Q4008393","display_name":"External quality assessment","level":2,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C139719470","wikidata":"https://www.wikidata.org/wiki/Q39680","display_name":"Macroeconomics","level":1,"score":0.0},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn55064.2022.9892432","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://pure.rug.nl/ws/files/568069032/An_Industry_4.0_example_real_time_quality_control_for_steel_based_mass_production_using_Machine_Learning_on_non_invasive_sensor_data.pdf","pdf_url":"https://pure.rug.nl/ws/files/568069032/An_Industry_4.0_example_real_time_quality_control_for_steel_based_mass_production_using_Machine_Learning_on_non_invasive_sensor_data.pdf","source":{"id":"https://openalex.org/S4306400420","display_name":"University of Groningen research database (University of Groningen / Centre for Information Technology)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I169381384","host_organization_name":"University of Groningen","host_organization_lineage":["https://openalex.org/I169381384"],"host_organization_lineage_names":["University of Groningen"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://research.rug.nl/en/publications/6795d17a-18bc-4faf-8437-d44cf9a5fefb","pdf_url":"https://research.rug.nl/files/568069032/An_Industry_4.0_example_real_time_quality_control_for_steel_based_mass_production_using_Machine_Learning_on_non_invasive_sensor_data.pdf","source":{"id":"https://openalex.org/S4306401843","display_name":"Data Archiving and Networked Services (DANS)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1322597698","host_organization_name":"Royal Netherlands Academy of Arts and Sciences","host_organization_lineage":["https://openalex.org/I1322597698"],"host_organization_lineage_names":["Royal Netherlands Academy of Arts and Sciences"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2206.05818","pdf_url":"https://arxiv.org/pdf/2206.05818","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://pure.rug.nl/ws/files/568069032/An_Industry_4.0_example_real_time_quality_control_for_steel_based_mass_production_using_Machine_Learning_on_non_invasive_sensor_data.pdf","pdf_url":"https://pure.rug.nl/ws/files/568069032/An_Industry_4.0_example_real_time_quality_control_for_steel_based_mass_production_using_Machine_Learning_on_non_invasive_sensor_data.pdf","source":{"id":"https://openalex.org/S4306400420","display_name":"University of Groningen research database (University of Groningen / Centre for Information Technology)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I169381384","host_organization_name":"University of Groningen","host_organization_lineage":["https://openalex.org/I169381384"],"host_organization_lineage_names":["University of Groningen"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W2039434802","https://openalex.org/W2070665593","https://openalex.org/W2101234009","https://openalex.org/W2137225583","https://openalex.org/W2166207675","https://openalex.org/W2335899954","https://openalex.org/W2600906228","https://openalex.org/W2771783069","https://openalex.org/W2791987562","https://openalex.org/W2902455138","https://openalex.org/W2914162553","https://openalex.org/W2914775452","https://openalex.org/W3093656051","https://openalex.org/W3103188483","https://openalex.org/W3156592050","https://openalex.org/W3206436985"],"related_works":["https://openalex.org/W2952193403","https://openalex.org/W2381417557","https://openalex.org/W2368721293","https://openalex.org/W2366208172","https://openalex.org/W2288610023","https://openalex.org/W2272483237","https://openalex.org/W2068590503","https://openalex.org/W2052427770","https://openalex.org/W2047120908","https://openalex.org/W2000051646"],"abstract_inverted_index":{"Insufficient":[0],"steel":[1,116,128],"quality":[2,17,30,58,360],"in":[3,98,107,183,276],"mass":[4],"production":[5,13,50,97,126,206,286],"can":[6,114],"cause":[7],"extremely":[8],"costly":[9],"damage":[10],"to":[11,24,92,145,155,173,192,268,289],"tooling,":[12],"downtimes":[14],"and":[15,21,34,69,134,167,197,258,283,327,364],"low":[16],"products.":[18,54],"Automatic,":[19],"fast":[20],"cheap":[22],"strategies":[23],"estimate":[25],"essential":[26],"material":[27,57,95,163,195,214,230,248,299],"properties":[28,164,196,300],"for":[29,235,309,358],"control,":[31,361],"risk":[32,347,362],"mitigation":[33],"the":[35,56,76,112,158,194,198,217,236,270,294,307,311,315,346],"prediction":[36],"of":[37,52,75,125,208,212,227,233,247,304,324,337,344,348],"faults":[38,203,249,282,319,330,350],"are":[39,287,301],"highly":[40],"desirable.":[41],"In":[42,239],"this":[43,292],"work":[44],"we":[45],"analyse":[46,193,269],"a":[47,72,87,108,240,277,334],"high":[48],"throughput":[49],"line":[51],"steel-based":[53],"Currently,":[55],"is":[59,66,102,153,181,190,342,351],"checked":[60],"using":[61],"manual":[62],"destructive":[63,136,177,264],"testing,":[64],"which":[65,310],"slow,":[67],"wasteful":[68],"covers":[70],"only":[71],"tiny":[73],"fraction":[74],"material.":[77],"To":[78],"achieve":[79],"complete":[80],"testing":[81,265],"coverage":[82],"our":[83],"industrial":[84],"collaborator":[85],"developed":[86],"contactless,":[88],"non-invasive,":[89],"electromagnetic":[90],"sensor":[91,113],"measure":[93],"all":[94],"during":[96,285,320],"real-time.":[99],"Our":[100,353],"contribution":[101],"three-fold:":[103],"1)":[104],"We":[105],"show":[106],"controlled":[109,242],"experiment":[110,243],"that":[111,170,298,332],"distinguish":[115],"with":[117,200,216],"deliberately":[118],"altered":[119],"properties.":[120],"2)":[121],"During":[122],"several":[123],"months":[124],"48":[127],"coils":[129],"were":[130,138],"fully":[131],"measured":[132,215],"non-invasively":[133],"additional":[135],"tests":[137],"conducted":[139],"on":[140,204],"samples":[141],"taken":[142],"from":[143,157,314],"them":[144],"serve":[146],"as":[147,261,263],"ground":[148],"truth.":[149],"A":[150],"linear":[151],"model":[152,189,221,295,325],"fitted":[154],"predict":[156],"non-invasive":[159,218,260],"measurements":[160],"two":[161],"key":[162],"(yield":[165],"strength":[166],"tensile":[168,237],"strength)":[169],"normally":[171],"have":[172],"be":[174],"obtained":[175],"by":[176],"tests.":[178],"The":[179,187,220,322],"performance":[180,225],"evaluated":[182],"leave-one-coil-out":[184],"cross-validation.":[185],"3)":[186],"resulting":[188],"used":[191],"relationship":[199,271],"reported":[201],"product":[202,281,329,349],"real":[205],"data":[207],"approximately":[209],"108":[210],"km":[211],"processed":[213],"sensor.":[219],"achieves":[222],"an":[223],"excellent":[224],"(F3-score":[226],"0.95)":[228],"predicting":[229],"running":[231],"out":[232,303,343],"specifications":[234],"strength.":[238],"second":[241],"one":[244],"coil":[245,293,317],"suspected":[246],"was":[250,266],"sampled":[251],"18":[252],"times":[253],"over":[254],"its":[255],"full":[256],"length":[257],"repeated":[259],"well":[262],"performed":[267],"between":[272],"both":[273],"measurement":[274],"types":[275],"situation":[278],"where":[279],"also":[280],"problems":[284],"expected":[288],"occur.":[290],"On":[291],"predictions":[296,326],"demonstrate":[297],"indeed":[302],"specification":[305],"near":[306],"point":[308],"products":[312],"made":[313],"neighbouring":[316],"exhibited":[318],"production.":[321],"combination":[323],"logged":[328],"shows":[331],"if":[333],"significant":[335],"percentage":[336],"estimated":[338],"yield":[339],"stress":[340],"values":[341],"specification,":[345],"high.":[352],"analysis":[354],"demonstrates":[355],"promising":[356],"directions":[357],"real-time":[359],"monitoring":[363],"fault":[365],"detection.":[366]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313055375","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2}],"updated_date":"2025-01-04T23:22:39.618937","created_date":"2023-01-06"}