{"id":"https://openalex.org/W4312591789","doi":"https://doi.org/10.1109/ijcnn55064.2022.9892372","title":"The Importance of Multiple Temporal Scales in Motion Recognition: when Shallow Model can Support Deep Multi Scale Models","display_name":"The Importance of Multiple Temporal Scales in Motion Recognition: when Shallow Model can Support Deep Multi Scale Models","publication_year":2022,"publication_date":"2022-07-18","ids":{"openalex":"https://openalex.org/W4312591789","doi":"https://doi.org/10.1109/ijcnn55064.2022.9892372"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn55064.2022.9892372","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101751589","display_name":"Vincenzo D\u2019Amato","orcid":"https://orcid.org/0000-0002-2492-7340"},"institutions":[{"id":"https://openalex.org/I83816512","display_name":"University of Genoa","ror":"https://ror.org/0107c5v14","country_code":"IT","type":"education","lineage":["https://openalex.org/I83816512"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Vincenzo D'Amato","raw_affiliation_strings":["University of Genoa,Genova,Italy,16145"],"affiliations":[{"raw_affiliation_string":"University of Genoa,Genova,Italy,16145","institution_ids":["https://openalex.org/I83816512"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045802198","display_name":"Luca Oneto","orcid":"https://orcid.org/0000-0002-8445-395X"},"institutions":[{"id":"https://openalex.org/I83816512","display_name":"University of Genoa","ror":"https://ror.org/0107c5v14","country_code":"IT","type":"education","lineage":["https://openalex.org/I83816512"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Luca Oneto","raw_affiliation_strings":["University of Genoa,Genova,Italy,16145"],"affiliations":[{"raw_affiliation_string":"University of Genoa,Genova,Italy,16145","institution_ids":["https://openalex.org/I83816512"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001979771","display_name":"Antonio Camurri","orcid":"https://orcid.org/0000-0003-3378-8685"},"institutions":[{"id":"https://openalex.org/I83816512","display_name":"University of Genoa","ror":"https://ror.org/0107c5v14","country_code":"IT","type":"education","lineage":["https://openalex.org/I83816512"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Antonio Camurri","raw_affiliation_strings":["University of Genoa,Genova,Italy,16145"],"affiliations":[{"raw_affiliation_string":"University of Genoa,Genova,Italy,16145","institution_ids":["https://openalex.org/I83816512"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036611143","display_name":"Davide Anguita","orcid":"https://orcid.org/0000-0001-7523-5291"},"institutions":[{"id":"https://openalex.org/I83816512","display_name":"University of Genoa","ror":"https://ror.org/0107c5v14","country_code":"IT","type":"education","lineage":["https://openalex.org/I83816512"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Davide Anguita","raw_affiliation_strings":["University of Genoa,Genova,Italy,16145"],"affiliations":[{"raw_affiliation_string":"University of Genoa,Genova,Italy,16145","institution_ids":["https://openalex.org/I83816512"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.296,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.558308,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"01","last_page":"10"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9887,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12290","display_name":"Human Motion and Animation","score":0.9814,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dyad","display_name":"Dyad","score":0.51721203},{"id":"https://openalex.org/keywords/temporal-database","display_name":"Temporal database","score":0.44873577},{"id":"https://openalex.org/keywords/motion-capture","display_name":"Motion Capture","score":0.41596213}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77054083},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.6189689},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5879378},{"id":"https://openalex.org/C2777716012","wikidata":"https://www.wikidata.org/wiki/Q5318389","display_name":"Dyad","level":2,"score":0.51721203},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.49975872},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.45128307},{"id":"https://openalex.org/C77277458","wikidata":"https://www.wikidata.org/wiki/Q1969246","display_name":"Temporal database","level":2,"score":0.44873577},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.44755203},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.4449338},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43927678},{"id":"https://openalex.org/C48007421","wikidata":"https://www.wikidata.org/wiki/Q676252","display_name":"Motion capture","level":3,"score":0.41596213},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.23746195},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn55064.2022.9892372","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.41}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":62,"referenced_works":["https://openalex.org/W1509211804","https://openalex.org/W1510073064","https://openalex.org/W1522301498","https://openalex.org/W1761662373","https://openalex.org/W1958807170","https://openalex.org/W1973672195","https://openalex.org/W1978383016","https://openalex.org/W1980678068","https://openalex.org/W2029325660","https://openalex.org/W2032698795","https://openalex.org/W2045947692","https://openalex.org/W2051363508","https://openalex.org/W2097520516","https://openalex.org/W2097909335","https://openalex.org/W2097998348","https://openalex.org/W2099634219","https://openalex.org/W2137847051","https://openalex.org/W2152417180","https://openalex.org/W2170505850","https://openalex.org/W2219995598","https://openalex.org/W2295598076","https://openalex.org/W2338072405","https://openalex.org/W2412782625","https://openalex.org/W2472901858","https://openalex.org/W2490023472","https://openalex.org/W2594167370","https://openalex.org/W2598391117","https://openalex.org/W2766447205","https://openalex.org/W2792764867","https://openalex.org/W2798258579","https://openalex.org/W2885311373","https://openalex.org/W2885623676","https://openalex.org/W2903497653","https://openalex.org/W2904083233","https://openalex.org/W2911964244","https://openalex.org/W2918378401","https://openalex.org/W2940791683","https://openalex.org/W2952587893","https://openalex.org/W2963015369","https://openalex.org/W2963258365","https://openalex.org/W2963840672","https://openalex.org/W2969476445","https://openalex.org/W2975003464","https://openalex.org/W2986953233","https://openalex.org/W2998768810","https://openalex.org/W3001393087","https://openalex.org/W3009918327","https://openalex.org/W3088648119","https://openalex.org/W3092477410","https://openalex.org/W3133854053","https://openalex.org/W3137292479","https://openalex.org/W3137959340","https://openalex.org/W3177828909","https://openalex.org/W3179427928","https://openalex.org/W3196108140","https://openalex.org/W3199667134","https://openalex.org/W4211072535","https://openalex.org/W4211153864","https://openalex.org/W4236362309","https://openalex.org/W4240275107","https://openalex.org/W4402843978","https://openalex.org/W568491194"],"related_works":["https://openalex.org/W4312814274","https://openalex.org/W4285370786","https://openalex.org/W3207760230","https://openalex.org/W2536018345","https://openalex.org/W2358353312","https://openalex.org/W2296488620","https://openalex.org/W1975967333","https://openalex.org/W17155033","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"The":[0,82,106],"execution":[1],"of":[2,155,165,168,176,202,224,245,265,292],"a":[3,22,141,194,219,298],"human":[4,30,303],"movement":[5,304],"involves":[6],"different":[7,18,79,162],"muscles":[8],"that":[9,39,114],"are":[10,46,55,125,272],"activated":[11],"and":[12,172,175,189,227,263,286,305],"coordinated":[13],"by":[14],"the":[15,103,159,169,182,200,222,225,228,243,246,249,252,266,278,284,287,290],"brain":[16],"at":[17,161],"temporal":[19,37,121,145,163],"scales":[20,38,122],"in":[21,193,269],"complex":[23],"cognitive":[24],"process.":[25],"For":[26,135],"this":[27,51,74,136,270],"reason,":[28,137],"studying":[29],"motion":[31,209,257],"requires":[32],"to":[33,49,69,98,102,118,127,180,198,239,277,300],"properly":[34,53],"model":[35],"multiple":[36,120,144,307],"fully":[40],"describe":[41],"its":[42,306],"complexity.":[43],"Current":[44],"approaches":[45],"not":[47],"able":[48,68],"address":[50],"requirement":[52],"or":[54,248],"based":[56,86,110,149,255],"on":[57,87,111,150,256],"oversimplified":[58],"models":[59,64,89,113,179,296],"with":[60],"obvious":[61],"limitations.":[62],"Data-driven":[63],"represent":[65],"research":[66,279],"frontiers":[67],"provide":[70],"new":[71,142],"insights.":[72],"In":[73,205],"work":[75,271],"we":[76,138,207,232],"will":[77,139,233],"investigate":[78],"data-driven":[80,147],"approaches.":[81],"first":[83],"one":[84,108],"is":[85,109,237],"shallow":[88,173,178],"that,":[90],"while":[91],"achieving":[92],"reasonably":[93],"good":[94],"recognition":[95],"performance,":[96],"require":[97],"handcraft":[99],"features":[100,157],"according":[101],"domain":[104],"knowledge":[105],"second":[107],"deep":[112,143,171,293],"can":[115],"be":[116],"extended":[117],"manage":[119],"but":[123],"they":[124],"hard":[126],"exploit":[128],"as":[129,297],"too":[130],"many":[131],"architecture":[132,183],"configurations":[133],"exist.":[134],"propose":[140],"scale":[146,295,309],"model,":[148],"Temporal":[151],"Convolutional":[152],"Network,":[153],"capable":[154],"learning":[156],"from":[158],"data":[160,188,211],"scales,":[164],"outperforming":[166],"state":[167],"art":[170],"models,":[174],"exploiting":[177],"tune":[181],"configuration.":[184],"We":[185],"designed,":[186],"collected":[187,208],"tested":[190],"our":[191,203,261],"proposal":[192,285],"specially":[195],"devised":[196],"experiment,":[197],"prove":[199],"validity":[201],"approach.":[204],"particular,":[206],"capture":[210],"about":[212],"dyad":[213],"actions":[214],"where":[215],"two":[216],"people":[217],"exchange":[218],"ball.":[220],"As":[221],"weight":[223,244],"ball":[226,247],"throwing":[229],"intentions":[230],"change,":[231],"show":[234],"how":[235],"it":[236],"possible":[238],"automatically":[240],"detect":[241],"either":[242],"intention":[250],"behind":[251],"throw":[253],"just":[254],"data.":[258],"Data":[259],"regarding":[260],"experiment":[262],"code":[264],"methods":[267],"proposed":[268],"also":[273],"made":[274],"freely":[275],"available":[276],"community.":[280],"Results":[281],"support":[282],"both":[283],"need":[288],"for":[289],"use":[291],"multi":[294],"tool":[299],"better":[301],"understand":[302],"time":[308],"nature.":[310]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312591789","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-21T12:34:00.264897","created_date":"2023-01-05"}