{"id":"https://openalex.org/W4312270955","doi":"https://doi.org/10.1109/ijcnn55064.2022.9892363","title":"Multi-scale Fusion and Global Semantic Encoding for Affordance Detection","display_name":"Multi-scale Fusion and Global Semantic Encoding for Affordance Detection","publication_year":2022,"publication_date":"2022-07-18","ids":{"openalex":"https://openalex.org/W4312270955","doi":"https://doi.org/10.1109/ijcnn55064.2022.9892363"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn55064.2022.9892363","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101674942","display_name":"Yang Zhang","orcid":"https://orcid.org/0000-0001-9889-2921"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yang Zhang","raw_affiliation_strings":["Hangzhou Innovation Institute, Beihang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hangzhou Innovation Institute, Beihang University, Hangzhou, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100785157","display_name":"Huiyong Li","orcid":"https://orcid.org/0000-0002-7097-4850"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huiyong Li","raw_affiliation_strings":["School of Computer Science and Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019680908","display_name":"Tao Ren","orcid":"https://orcid.org/0000-0003-0408-9447"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tao Ren","raw_affiliation_strings":["Hangzhou Innovation Institute, Beihang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hangzhou Innovation Institute, Beihang University, Hangzhou, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040896404","display_name":"Yuanbo Dou","orcid":null},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuanbo Dou","raw_affiliation_strings":["Hangzhou Innovation Institute, Beihang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hangzhou Innovation Institute, Beihang University, Hangzhou, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100349222","display_name":"Qingfeng Li","orcid":"https://orcid.org/0000-0002-3603-7580"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qingfeng Li","raw_affiliation_strings":["Hangzhou Innovation Institute, Beihang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hangzhou Innovation Institute, Beihang University, Hangzhou, China","institution_ids":["https://openalex.org/I82880672"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.352,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.832004,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10653","display_name":"Robot Manipulation and Learning","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10653","display_name":"Robot Manipulation and Learning","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/affordance","display_name":"Affordance","score":0.77757245},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.6232839},{"id":"https://openalex.org/keywords/object-detection","display_name":"Object Detection","score":0.562845},{"id":"https://openalex.org/keywords/novelty-detection","display_name":"Novelty Detection","score":0.54676},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.54353344},{"id":"https://openalex.org/keywords/3d-object-recognition","display_name":"3D Object Recognition","score":0.535191},{"id":"https://openalex.org/keywords/neural-network-architectures","display_name":"Neural Network Architectures","score":0.523907},{"id":"https://openalex.org/keywords/outlier-detection","display_name":"Outlier Detection","score":0.522454}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82959163},{"id":"https://openalex.org/C194995250","wikidata":"https://www.wikidata.org/wiki/Q531136","display_name":"Affordance","level":2,"score":0.77757245},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.6232839},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.610414},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.6082432},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.5939228},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5670764},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.5615069},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.54353344},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.5080371},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.43451145},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.42698088},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41461852},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.35189396},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.26605308},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.14219248},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn55064.2022.9892363","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.44,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1524405667","https://openalex.org/W1606858007","https://openalex.org/W1903029394","https://openalex.org/W1933657216","https://openalex.org/W1994922096","https://openalex.org/W1999156278","https://openalex.org/W2012592962","https://openalex.org/W2117539524","https://openalex.org/W2151103935","https://openalex.org/W2155217025","https://openalex.org/W2412782625","https://openalex.org/W2519537448","https://openalex.org/W2561523096","https://openalex.org/W2566365295","https://openalex.org/W2620629206","https://openalex.org/W2741998915","https://openalex.org/W2773765248","https://openalex.org/W2916798096","https://openalex.org/W2962984928","https://openalex.org/W2963048817","https://openalex.org/W2963837081","https://openalex.org/W2997936244","https://openalex.org/W3120221531","https://openalex.org/W3135698775","https://openalex.org/W4297665946"],"related_works":["https://openalex.org/W3049116993","https://openalex.org/W2589081601","https://openalex.org/W2346831895","https://openalex.org/W2248634132","https://openalex.org/W2226037301","https://openalex.org/W2129146436","https://openalex.org/W2032507829","https://openalex.org/W1972718289","https://openalex.org/W1791514435","https://openalex.org/W1541884709"],"abstract_inverted_index":{"Affordance":[0],"detection":[1,38],"is":[2,112,132],"of":[3,14,47,81,103,124,158,169,178],"great":[4],"importance":[5],"in":[6],"robot":[7],"operational":[8],"tasks,":[9],"due":[10],"to":[11,59,72,114,134],"its":[12],"capability":[13],"helping":[15],"robots":[16],"effectively":[17,118],"interact":[18],"with":[19,155],"objects.":[20],"Many":[21],"affordance":[22,49],"detectors":[23,50],"have":[24,43],"been":[25],"proposed,":[26],"primarily":[27],"based":[28,51,97],"on":[29,52,67,181],"two-stage":[30],"object":[31],"detection,":[32],"significantly":[33],"suffering":[34],"from":[35],"the":[36,45,79,86,101,120,125,148,152,159,164,167,174],"slow":[37],"speed.":[39],"Hence,":[40],"recent":[41],"years":[42],"saw":[44],"popularity":[46],"one-stage":[48,82],"encoder-decoder":[53,98],"structures":[54],"that":[55,147],"adopt":[56],"dilated":[57,65,105],"convolutions":[58,66],"extract":[60],"high-resolution":[61,116],"feature":[62,121,142],"maps.":[63,143],"However,":[64],"high":[68],"resolution":[69],"features":[70],"tend":[71],"be":[73],"computation":[74],"and":[75,139,184],"memory-intensive,":[76],"greatly":[77],"limiting":[78],"practicality":[80],"detectors.":[83],"To":[84],"address":[85],"issue,":[87],"this":[88],"paper":[89],"proposes":[90],"a":[91,128],"novel":[92],"convolution":[93],"neural":[94],"network":[95,111,180],"(CNN)":[96],"architecture,":[99],"without":[100],"need":[102],"adopting":[104],"convolution.":[106],"A":[107],"repeated":[108],"multi-scale":[109],"feature-map-fusion":[110],"introduced":[113],"produce":[115],"features,":[117],"improving":[119],"representation":[122],"performance":[123,177],"model.":[126],"Besides,":[127],"semantic":[129,137],"encode":[130],"module":[131],"embedded":[133],"capture":[135],"global":[136],"information":[138],"enhance":[140],"category-relevant":[141],"Extensive":[144],"experiments":[145],"show":[146],"proposed":[149],"framework":[150],"outperforms":[151],"start-of-art":[153],"methods":[154],"only":[156],"1/2":[157],"computational":[160],"cost,":[161],"while":[162],"maintaining":[163],"inference":[165],"at":[166],"speed":[168],"26ms":[170],"per":[171],"image,":[172],"indicating":[173],"promising":[175],"affordance-detection":[176],"our":[179],"IIT-AFF":[182],"dataset":[183],"UMD":[185],"dataset.":[186]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312270955","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3}],"updated_date":"2024-12-05T16:06:38.982653","created_date":"2023-01-04"}