{"id":"https://openalex.org/W4385489038","doi":"https://doi.org/10.1109/ijcnn54540.2023.10191442","title":"EARP: Integration with Entity Attribute and Relation Path for Event Knowledge Graph Representation Learning","display_name":"EARP: Integration with Entity Attribute and Relation Path for Event Knowledge Graph Representation Learning","publication_year":2023,"publication_date":"2023-06-18","ids":{"openalex":"https://openalex.org/W4385489038","doi":"https://doi.org/10.1109/ijcnn54540.2023.10191442"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn54540.2023.10191442","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102338481","display_name":"Ze Xu","orcid":null},"institutions":[{"id":"https://openalex.org/I119045251","display_name":"Huaqiao University","ror":"https://ror.org/03frdh605","country_code":"CN","type":"education","lineage":["https://openalex.org/I119045251"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ze Xu","raw_affiliation_strings":["College of Computer Science and Technology, Huaqiao University, Xiamen, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Technology, Huaqiao University, Xiamen, China","institution_ids":["https://openalex.org/I119045251"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103038073","display_name":"Hao Zhou","orcid":"https://orcid.org/0000-0001-5339-147X"},"institutions":[{"id":"https://openalex.org/I119045251","display_name":"Huaqiao University","ror":"https://ror.org/03frdh605","country_code":"CN","type":"education","lineage":["https://openalex.org/I119045251"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hao Zhou","raw_affiliation_strings":["College of Computer Science and Technology, Huaqiao University, Xiamen, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Technology, Huaqiao University, Xiamen, China","institution_ids":["https://openalex.org/I119045251"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101766477","display_name":"Ting He","orcid":"https://orcid.org/0000-0002-9712-1946"},"institutions":[{"id":"https://openalex.org/I119045251","display_name":"Huaqiao University","ror":"https://ror.org/03frdh605","country_code":"CN","type":"education","lineage":["https://openalex.org/I119045251"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ting He","raw_affiliation_strings":["College of Computer Science and Technology, Huaqiao University, Xiamen, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Technology, Huaqiao University, Xiamen, China","institution_ids":["https://openalex.org/I119045251"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5041840086","display_name":"Huazhen Wang","orcid":"https://orcid.org/0000-0002-6548-9957"},"institutions":[{"id":"https://openalex.org/I119045251","display_name":"Huaqiao University","ror":"https://ror.org/03frdh605","country_code":"CN","type":"education","lineage":["https://openalex.org/I119045251"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huazhen Wang","raw_affiliation_strings":["College of Computer Science and Technology, Huaqiao University, Xiamen, China","Key Laboratory of Computer Vision and Machine Learning, Huaqiao University, Fujian Province University, Xiamen, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Technology, Huaqiao University, Xiamen, China","institution_ids":["https://openalex.org/I119045251"]},{"raw_affiliation_string":"Key Laboratory of Computer Vision and Machine Learning, Huaqiao University, Fujian Province University, Xiamen, China","institution_ids":["https://openalex.org/I119045251"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9528,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.5753236},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.5364794},{"id":"https://openalex.org/keywords/knowledge-graph","display_name":"Knowledge graph","score":0.42726487}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7500886},{"id":"https://openalex.org/C25343380","wikidata":"https://www.wikidata.org/wiki/Q277521","display_name":"Relation (database)","level":2,"score":0.63728565},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.5919018},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.5753236},{"id":"https://openalex.org/C161301231","wikidata":"https://www.wikidata.org/wiki/Q3478658","display_name":"Knowledge representation and reasoning","level":2,"score":0.56242955},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5473093},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54534054},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.5364794},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.51687264},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.4403341},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43812844},{"id":"https://openalex.org/C2987255567","wikidata":"https://www.wikidata.org/wiki/Q33002955","display_name":"Knowledge graph","level":2,"score":0.42726487},{"id":"https://openalex.org/C13336665","wikidata":"https://www.wikidata.org/wiki/Q125977","display_name":"Vector space","level":2,"score":0.4233542},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.37902075},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35577947},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3055921},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11243242},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn54540.2023.10191442","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":"TZYB-202005"}],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1426956448","https://openalex.org/W1614298861","https://openalex.org/W1991018417","https://openalex.org/W2080091808","https://openalex.org/W2127795553","https://openalex.org/W2145374219","https://openalex.org/W2172684358","https://openalex.org/W2184957013","https://openalex.org/W2234575251","https://openalex.org/W2250911766","https://openalex.org/W2252139350","https://openalex.org/W2283196293","https://openalex.org/W2433281745","https://openalex.org/W2460319482","https://openalex.org/W2475875369","https://openalex.org/W2499696929","https://openalex.org/W2572179331","https://openalex.org/W2766262633","https://openalex.org/W2793248701","https://openalex.org/W2896457183","https://openalex.org/W2906665692","https://openalex.org/W2962924456","https://openalex.org/W2963276152","https://openalex.org/W2964080504","https://openalex.org/W2964152081","https://openalex.org/W3130627527","https://openalex.org/W4226263955"],"related_works":["https://openalex.org/W4321636575","https://openalex.org/W3103476451","https://openalex.org/W3080107865","https://openalex.org/W2741131631","https://openalex.org/W2357796999","https://openalex.org/W2156919374","https://openalex.org/W2055243143","https://openalex.org/W2045526782","https://openalex.org/W1986418932","https://openalex.org/W1984019423"],"abstract_inverted_index":{"Event":[0],"knowledge":[1,9,35,61,88,101],"graph":[2,10],"(EKG)":[3],"as":[4],"a":[5,51,69,140],"special":[6],"case":[7],"of":[8,16,46,78,89,128,177],"(KG)":[11],"can":[12,165],"realize":[13],"the":[14,43,56,76,87,100,105,126,135,154,159,174,194],"goal":[15],"event":[17,79,138],"prediction,":[18],"and":[19,27,48,54,64,82,96,99,120,125,148,158,171],"has":[20],"been":[21],"proved":[22],"useful":[23],"in":[24,50,60],"medical":[25],"diagnosis":[26],"intelligent":[28],"recommendation.":[29],"To":[30],"successfully":[31],"build":[32],"an":[33],"EKG,":[34],"representation":[36,72,118,123,127],"learning":[37,73,156,161,169],"is":[38,109,131,144],"often":[39],"required":[40],"to":[41,134,146,152],"compute":[42],"semantic":[44,114],"links":[45],"entities":[47],"relationships":[49],"low-dimensional":[52],"space":[53],"solve":[55],"data":[57],"sparsity":[58],"issue":[59],"acquisition,":[62],"fusion":[63],"reasoning.":[65],"This":[66],"paper":[67],"proposes":[68],"new":[70],"EKG":[71,184],"model":[74,142],"featuring":[75],"integration":[77],"entity":[80,90,94,97,106,113,116,121,155],"attributes":[81],"relation":[83,103,129,136,160],"paths.":[84],"By":[85],"utilizing":[86],"attribute,":[91],"which":[92],"contains":[93],"type":[95,122],"description,":[98],"about":[102],"paths,":[104],"initial":[107],"vector":[108,119,157],"obtained":[110,132],"by":[111],"multiplying":[112],"vector,":[115,124],"description":[117],"path":[130],"according":[133],"between":[137],"pairs,":[139],"translation-based":[141],"framework":[143],"used":[145],"integrate":[147],"train":[149],"all":[150],"vectors":[151],"obtain":[153],"vector.":[162],"our":[163,188],"method":[164,189],"generate":[166],"more":[167],"expressive":[168],"representations,":[170],"consequently,":[172],"enhance":[173],"inference":[175],"performance":[176,192],"EKG.":[178],"Experiments":[179],"on":[180,197],"publicly":[181],"available":[182],"real-world":[183],"datasets":[185],"show":[186],"that":[187],"achieves":[190],"better":[191],"than":[193],"state-of-the-art":[195],"models":[196],"two":[198],"typical":[199],"tasks.":[200]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385489038","counts_by_year":[],"updated_date":"2025-01-02T20:37:40.999455","created_date":"2023-08-03"}