{"id":"https://openalex.org/W4385484609","doi":"https://doi.org/10.1109/ijcnn54540.2023.10191417","title":"Neural Network Module Decomposition and Recomposition with Superimposed Masks","display_name":"Neural Network Module Decomposition and Recomposition with Superimposed Masks","publication_year":2023,"publication_date":"2023-06-18","ids":{"openalex":"https://openalex.org/W4385484609","doi":"https://doi.org/10.1109/ijcnn54540.2023.10191417"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn54540.2023.10191417","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039965386","display_name":"Hiroaki Kingetsu","orcid":null},"institutions":[{"id":"https://openalex.org/I2252096349","display_name":"Fujitsu (Japan)","ror":"https://ror.org/038e2g226","country_code":"JP","type":"company","lineage":["https://openalex.org/I2252096349"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Hiroaki Kingetsu","raw_affiliation_strings":["AI Laboratory, Fujitsu Limited, Kanagawa, Japan"],"affiliations":[{"raw_affiliation_string":"AI Laboratory, Fujitsu Limited, Kanagawa, Japan","institution_ids":["https://openalex.org/I2252096349"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101637737","display_name":"Kenichi Kobayashi","orcid":"https://orcid.org/0000-0001-9827-8315"},"institutions":[{"id":"https://openalex.org/I2252096349","display_name":"Fujitsu (Japan)","ror":"https://ror.org/038e2g226","country_code":"JP","type":"company","lineage":["https://openalex.org/I2252096349"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Kenichi Kobayashi","raw_affiliation_strings":["AI Laboratory, Fujitsu Limited, Kanagawa, Japan"],"affiliations":[{"raw_affiliation_string":"AI Laboratory, Fujitsu Limited, Kanagawa, Japan","institution_ids":["https://openalex.org/I2252096349"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078812767","display_name":"Taiji Suzuki","orcid":"https://orcid.org/0000-0003-3459-1016"},"institutions":[{"id":"https://openalex.org/I4210126580","display_name":"RIKEN Center for Advanced Intelligence Project","ror":"https://ror.org/03ckxwf91","country_code":"JP","type":"facility","lineage":["https://openalex.org/I4210110652","https://openalex.org/I4210126580"]},{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Taiji Suzuki","raw_affiliation_strings":["RIKEN Center for Advanced Intelligence Project, The University of Tokyo, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"RIKEN Center for Advanced Intelligence Project, The University of Tokyo, Tokyo, Japan","institution_ids":["https://openalex.org/I4210126580","https://openalex.org/I74801974"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.698,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.778672,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"10"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8089012},{"id":"https://openalex.org/C206588197","wikidata":"https://www.wikidata.org/wiki/Q846574","display_name":"Reuse","level":2,"score":0.5697713},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5440989},{"id":"https://openalex.org/C124681953","wikidata":"https://www.wikidata.org/wiki/Q339062","display_name":"Decomposition","level":2,"score":0.47042155},{"id":"https://openalex.org/C180016635","wikidata":"https://www.wikidata.org/wiki/Q2712821","display_name":"Compression (physics)","level":2,"score":0.4292948},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35142475},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn54540.2023.10191417","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.45,"display_name":"Decent work and economic growth","id":"https://metadata.un.org/sdg/8"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1524097605","https://openalex.org/W1677182931","https://openalex.org/W1682403713","https://openalex.org/W2001610032","https://openalex.org/W2045257906","https://openalex.org/W2063867591","https://openalex.org/W2108598243","https://openalex.org/W2112796928","https://openalex.org/W2146615496","https://openalex.org/W2194775991","https://openalex.org/W2549139847","https://openalex.org/W2551176409","https://openalex.org/W2592004655","https://openalex.org/W2747329762","https://openalex.org/W2750384547","https://openalex.org/W2791091755","https://openalex.org/W2964137095","https://openalex.org/W2998103904","https://openalex.org/W3012528319","https://openalex.org/W3017374003","https://openalex.org/W3034234149","https://openalex.org/W3035682985","https://openalex.org/W3102385344","https://openalex.org/W3103697033","https://openalex.org/W3118608800","https://openalex.org/W4394642372"],"related_works":["https://openalex.org/W2999162218","https://openalex.org/W2390634956","https://openalex.org/W2384475851","https://openalex.org/W2381798600","https://openalex.org/W2367078749","https://openalex.org/W2353602216","https://openalex.org/W2351618306","https://openalex.org/W2000444236","https://openalex.org/W1910583078","https://openalex.org/W1537443268"],"abstract_inverted_index":{"We":[0,133],"propose":[1],"a":[2,7,20,29,47,145],"modularization":[3],"method":[4,124,138],"that":[5,71,135],"decomposes":[6],"deep":[8],"neural":[9],"network":[10],"(DNN)":[11],"into":[12,49],"small":[13,63],"modules":[14,27,92],"as":[15,67,75,78],"binary":[16],"classifiers":[17],"and":[18,93,141,149,152],"recomposes":[19],"new":[21],"model":[22,85,104,121],"of":[23,25,82,116,130],"some":[24],"these":[26],"for":[28,107],"different":[30],"task.":[31],"Our":[32],"goal":[33],"is":[34,86,105,112,153],"to":[35,61,114,128,155],"develop":[36],"appropriate":[37],"models":[38,115],"by":[39,120],"quickly":[40],"reusing":[41],"existing":[42,156],"well-designed":[43],"models.":[44],"To":[45],"decompose":[46,140],"DNN":[48],"modules,":[50],"we":[51],"use":[52],"weight":[53],"masks":[54],"based":[55],"on":[56],"the":[57,80,83,91,97,102,136],"lottery":[58],"ticket":[59],"hypothesis":[60],"extract":[62],"single-function":[64],"winning":[65],"tickets":[66],"modules.":[68],"By":[69],"ensuring":[70],"each":[72],"module":[73],"shares":[74],"many":[76],"parameters":[77],"possible,":[79],"size":[81,118],"recomposed":[84,103],"not":[87],"much":[88],"larger":[89],"than":[90,96],"significantly":[94],"smaller":[95],"original":[98],"DNN.":[99],"Furthermore,":[100],"since":[101],"specialized":[106],"fewer":[108],"classes,":[109],"its":[110],"accuracy":[111],"superior":[113,154],"comparable":[117],"produced":[119],"compression.":[122],"This":[123],"can":[125,139],"be":[126],"applied":[127],"DNNs":[129,143],"any":[131],"architecture.":[132],"demonstrate":[134],"proposed":[137],"recompose":[142],"with":[144],"high":[146,150],"compression":[147],"ratio":[148],"accuracy,":[151],"methods.":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385484609","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-02T21:23:52.881196","created_date":"2023-08-03"}