{"id":"https://openalex.org/W4385484787","doi":"https://doi.org/10.1109/ijcnn54540.2023.10191385","title":"Non-exemplar Class-incremental Learning via Dual Augmentation and Dual Distillation","display_name":"Non-exemplar Class-incremental Learning via Dual Augmentation and Dual Distillation","publication_year":2023,"publication_date":"2023-06-18","ids":{"openalex":"https://openalex.org/W4385484787","doi":"https://doi.org/10.1109/ijcnn54540.2023.10191385"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn54540.2023.10191385","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101895755","display_name":"Ke Song","orcid":"https://orcid.org/0000-0002-1949-9986"},"institutions":[{"id":"https://openalex.org/I17145004","display_name":"Northwestern Polytechnical University","ror":"https://ror.org/01y0j0j86","country_code":"CN","type":"education","lineage":["https://openalex.org/I17145004"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ke Song","raw_affiliation_strings":["School of Computer Science, Northwestern Polytechnical University,Xi'an,China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Northwestern Polytechnical University,Xi'an,China","institution_ids":["https://openalex.org/I17145004"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101744842","display_name":"Quan Xia","orcid":"https://orcid.org/0000-0003-3980-2708"},"institutions":[{"id":"https://openalex.org/I17145004","display_name":"Northwestern Polytechnical University","ror":"https://ror.org/01y0j0j86","country_code":"CN","type":"education","lineage":["https://openalex.org/I17145004"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Quan Xia","raw_affiliation_strings":["School of Computer Science, Northwestern Polytechnical University,Xi'an,China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Northwestern Polytechnical University,Xi'an,China","institution_ids":["https://openalex.org/I17145004"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108854598","display_name":"Zhaoyong Qiu","orcid":null},"institutions":[{"id":"https://openalex.org/I17145004","display_name":"Northwestern Polytechnical University","ror":"https://ror.org/01y0j0j86","country_code":"CN","type":"education","lineage":["https://openalex.org/I17145004"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhaoyong Qiu","raw_affiliation_strings":["School of Computer Science, Northwestern Polytechnical University,Xi'an,China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Northwestern Polytechnical University,Xi'an,China","institution_ids":["https://openalex.org/I17145004"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.78780174},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.61373246},{"id":"https://openalex.org/keywords/incremental-learning","display_name":"Incremental Learning","score":0.55705476},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.53858936},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.41246593}],"concepts":[{"id":"https://openalex.org/C7149132","wikidata":"https://www.wikidata.org/wiki/Q1377840","display_name":"Forgetting","level":2,"score":0.8070431},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79845655},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.78780174},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64706916},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.61373246},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5687255},{"id":"https://openalex.org/C2780735816","wikidata":"https://www.wikidata.org/wiki/Q28324931","display_name":"Incremental learning","level":2,"score":0.55705476},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.53858936},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.505297},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.4535235},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.44375765},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.42999893},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.41246593},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.15208745},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn54540.2023.10191385","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.48}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1686810756","https://openalex.org/W2194775991","https://openalex.org/W2560647685","https://openalex.org/W2765407302","https://openalex.org/W2884282566","https://openalex.org/W2948734064","https://openalex.org/W2963072899","https://openalex.org/W2963559848","https://openalex.org/W2963854515","https://openalex.org/W2963870144","https://openalex.org/W2964189064","https://openalex.org/W2972313371","https://openalex.org/W2980101099","https://openalex.org/W2995139074","https://openalex.org/W3021931813","https://openalex.org/W3034856281","https://openalex.org/W3086731747","https://openalex.org/W3098511564","https://openalex.org/W3106217498","https://openalex.org/W3107810305","https://openalex.org/W3118608800","https://openalex.org/W3126121388","https://openalex.org/W3127228978","https://openalex.org/W3178686235","https://openalex.org/W3203064512","https://openalex.org/W3212150209","https://openalex.org/W4221161784","https://openalex.org/W4286903142","https://openalex.org/W4287814827","https://openalex.org/W4312309344","https://openalex.org/W4312446817","https://openalex.org/W4312754066","https://openalex.org/W4387757724"],"related_works":["https://openalex.org/W4391158518","https://openalex.org/W4382021137","https://openalex.org/W4381322349","https://openalex.org/W4297634446","https://openalex.org/W4287067590","https://openalex.org/W3192176272","https://openalex.org/W3186262193","https://openalex.org/W3157400488","https://openalex.org/W3085307110","https://openalex.org/W2892655153"],"abstract_inverted_index":{"Non-exemplar":[0],"class":[1,114],"incremental":[2,20,83],"learning":[3,84],"is":[4,22,179],"the":[5,36,40,43,47,58,62,67,71,78,82,125,166],"challenge":[6],"of":[7,16,172],"recognizing":[8],"new":[9,79,97,110,136],"and":[10,33,53,103,128,175],"old":[11,17],"classes":[12,120],"without":[13],"storing":[14],"samples":[15],"classes.":[18],"The":[19],"learner":[21],"usually":[23],"faced":[24],"with":[25],"how":[26],"to":[27,65,88,100,117,121,129],"strike":[28],"a":[29,96,109,135,170],"balance":[30,101],"between":[31],"transferability":[32,102],"stability.":[34],"On":[35,57],"one":[37],"hand,":[38,60],"if":[39,61],"model":[41,63],"overfits":[42],"current":[44,126],"task":[45],"data,":[46],"performance":[48],"will":[49,74],"collapse":[50],"when":[51],"encountering":[52],"solving":[54],"unseen":[55],"tasks.":[56],"other":[59],"fails":[64],"maintain":[66],"knowledge":[68],"already":[69],"learned,":[70],"feature":[72],"space":[73],"be":[75],"covered":[76],"by":[77,169],"features":[80],"during":[81],"process,":[85],"which":[86,145],"leads":[87],"catastrophic":[89,148],"forgetting.":[90],"In":[91],"this":[92],"paper,":[93],"we":[94,107,133],"propose":[95,108,134],"DADD":[98],"method":[99,111,160],"stability":[104],"better.":[105],"Firstly,":[106],"named":[112],"Rotation":[113],"augmentation":[115,138],"(Rot-classAug)":[116],"provide":[118],"additional":[119],"avoid":[122],"overfitting":[123],"at":[124,181],"stage":[127],"improve":[130],"transferability.":[131],"Secondly,":[132],"Noise-semantic":[137],"(N-semanAug)":[139],"that":[140,158],"contains":[141],"rich":[142],"old-class":[143],"information,":[144],"significantly":[146],"alleviates":[147],"forgetting":[149],"in":[150],"continuous":[151],"learning.":[152],"Experiments":[153],"on":[154],"benchmark":[155],"datasets":[156],"show":[157],"our":[159],"has":[161],"achieved":[162],"superior":[163],"performance,":[164],"outperforming":[165],"state-of-the-art":[167],"methods":[168],"margin":[171],"5%,":[173],"3%":[174],"4%,":[176],"respectively.":[177],"Code":[178],"available":[180],"https://github.com/Ke1Song/DADD":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385484787","counts_by_year":[],"updated_date":"2025-01-02T21:23:53.002716","created_date":"2023-08-03"}