{"id":"https://openalex.org/W3200213802","doi":"https://doi.org/10.1109/ijcnn52387.2021.9534457","title":"Disk Failure Prediction with Multiple Channel Convolutional Neural Network","display_name":"Disk Failure Prediction with Multiple Channel Convolutional Neural Network","publication_year":2021,"publication_date":"2021-07-18","ids":{"openalex":"https://openalex.org/W3200213802","doi":"https://doi.org/10.1109/ijcnn52387.2021.9534457","mag":"3200213802"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn52387.2021.9534457","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075242841","display_name":"Jian Wu","orcid":"https://orcid.org/0000-0003-0173-4463"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"education","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jian Wu","raw_affiliation_strings":["Faculty of Information Technology Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Faculty of Information Technology Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102986000","display_name":"Haiyang Yu","orcid":"https://orcid.org/0000-0003-3761-9598"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"education","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haiyang Yu","raw_affiliation_strings":["Faculty of Information Technology Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Faculty of Information Technology Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5115602239","display_name":"Zhen Yang","orcid":"https://orcid.org/0000-0002-6058-0217"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"education","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhen Yang","raw_affiliation_strings":["Faculty of Information Technology Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Faculty of Information Technology Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086582441","display_name":"Ruiping Yin","orcid":"https://orcid.org/0000-0002-8574-9357"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"education","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ruiping Yin","raw_affiliation_strings":["Faculty of Information Technology Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Faculty of Information Technology Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.478,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.508949,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":72},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11181","display_name":"Advanced Data Storage Technologies","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11181","display_name":"Advanced Data Storage Technologies","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10101","display_name":"Cloud Computing and Resource Management","score":0.9916,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9881,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/predictive-modelling","display_name":"Predictive modelling","score":0.52285814}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80970395},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6797455},{"id":"https://openalex.org/C45804977","wikidata":"https://www.wikidata.org/wiki/Q7239673","display_name":"Predictive modelling","level":2,"score":0.52285814},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5185438},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.49708346},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4803537},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.45589},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.43716472},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.43371934},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40916455},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08639458},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn52387.2021.9534457","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.59}],"grants":[{"funder":"https://openalex.org/F4320311649","funder_display_name":"Ministry of Education","award_id":null},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61671030"},{"funder":"https://openalex.org/F4320321543","funder_display_name":"China Postdoctoral Science Foundation","award_id":"2019M660377"}],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1530427892","https://openalex.org/W1727533515","https://openalex.org/W1832917778","https://openalex.org/W1965751562","https://openalex.org/W2002772577","https://openalex.org/W2041404167","https://openalex.org/W2052643920","https://openalex.org/W2064675550","https://openalex.org/W2114739461","https://openalex.org/W2119381450","https://openalex.org/W2148143831","https://openalex.org/W2533869535","https://openalex.org/W2546724522","https://openalex.org/W2565047864","https://openalex.org/W2786228682","https://openalex.org/W2808862972","https://openalex.org/W2951554591","https://openalex.org/W2966782250","https://openalex.org/W2978066186","https://openalex.org/W2978725006","https://openalex.org/W2997783880","https://openalex.org/W3005434125","https://openalex.org/W3048010553","https://openalex.org/W3090155366","https://openalex.org/W4393923338","https://openalex.org/W94959834"],"related_works":["https://openalex.org/W4366224123","https://openalex.org/W4321369474","https://openalex.org/W4320802194","https://openalex.org/W4312417841","https://openalex.org/W4311257506","https://openalex.org/W4223943233","https://openalex.org/W4200173597","https://openalex.org/W3133861977","https://openalex.org/W2731899572","https://openalex.org/W2337926734"],"abstract_inverted_index":{"With":[0],"the":[1,6,14,36,76,81,95,104,132,139],"increase":[2],"of":[3,8,16],"data":[4],"centers,":[5],"number":[7],"disks":[9],"also":[10],"grows":[11],"rapidly.":[12],"Therefore,":[13],"prediction":[15,30,38,56],"disk":[17,33,117,124],"failures":[18,118],"has":[19],"become":[20],"an":[21],"important":[22],"task":[23],"for":[24,53,99],"both":[25],"academia":[26],"and":[27,84,156],"industry.":[28],"Existing":[29],"schemes":[31,48],"predict":[32,115],"failure":[34],"in":[35,121,125],"short":[37,43],"horizon":[39,57],"or":[40],"with":[41,58,138],"a":[42,54,59,68,122],"time":[44,61],"window.":[45,62],"However,":[46],"these":[47],"cannot":[49],"achieve":[50],"ideal":[51],"performance":[52],"long":[55,60],"In":[63],"this":[64],"paper,":[65],"we":[66,102],"proposed":[67,103],"deep":[69],"learning":[70],"method":[71],"that":[72,145],"can":[73,148],"effectively":[74],"solve":[75],"above":[77],"problems.":[78],"We":[79,129],"refine":[80],"Self-Monitoring,":[82],"Analysis":[83],"Reporting":[85],"Technology":[86],"(SMART)":[87],"attributes":[88,98],"by":[89,135],"using":[90],"information":[91],"entropy":[92],"to":[93,114,154,162],"select":[94],"most":[96],"related":[97],"prediction.":[100],"Moreover,":[101],"Multiple":[105],"Channel":[106],"Convolutional":[107],"Neural":[108],"Network":[109],"based":[110],"LSTM":[111],"(MCCNN-LSTM)":[112],"model":[113,134,147],"whether":[116],"will":[119],"occur":[120],"given":[123],"next":[126],"few":[127],"days.":[128],"further":[130],"evaluate":[131],"MCCNN-LSTM":[133],"comparing":[136],"it":[137],"state-of-the-art":[140],"works.":[141],"Extensive":[142],"experiments":[143],"show":[144],"our":[146],"improve":[149],"FDR":[150],"(Fault":[151],"Detection":[152],"Rate)":[153,161],"99.8%":[155],"reduce":[157],"FAR":[158],"(False":[159],"Alarm":[160],"0.2%.":[163]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3200213802","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-20T09:46:19.727126","created_date":"2021-09-27"}