{"id":"https://openalex.org/W3198940792","doi":"https://doi.org/10.1109/ijcnn52387.2021.9533707","title":"Multi-modal Sign Language Recognition with Enhanced Spatiotemporal Representation","display_name":"Multi-modal Sign Language Recognition with Enhanced Spatiotemporal Representation","publication_year":2021,"publication_date":"2021-07-18","ids":{"openalex":"https://openalex.org/W3198940792","doi":"https://doi.org/10.1109/ijcnn52387.2021.9533707","mag":"3198940792"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn52387.2021.9533707","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015482464","display_name":"Shiwei Xiao","orcid":null},"institutions":[{"id":"https://openalex.org/I141962983","display_name":"Shanghai University of Engineering Science","ror":"https://ror.org/0557b9y08","country_code":"CN","type":"education","lineage":["https://openalex.org/I141962983"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shiwei Xiao","raw_affiliation_strings":["School of Computer Engineering and Science, Shanghai University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Engineering and Science, Shanghai University, Shanghai, China","institution_ids":["https://openalex.org/I141962983"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007282525","display_name":"Yuchun Fang","orcid":"https://orcid.org/0000-0002-7085-8876"},"institutions":[{"id":"https://openalex.org/I141962983","display_name":"Shanghai University of Engineering Science","ror":"https://ror.org/0557b9y08","country_code":"CN","type":"education","lineage":["https://openalex.org/I141962983"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuchun Fang","raw_affiliation_strings":["School of Computer Engineering and Science, Shanghai University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Engineering and Science, Shanghai University, Shanghai, China","institution_ids":["https://openalex.org/I141962983"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5000205091","display_name":"Lan Ni","orcid":null},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"education","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lan Ni","raw_affiliation_strings":["College of Liberal Arts, Shanghai University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Liberal Arts, Shanghai University, Shanghai, China","institution_ids":["https://openalex.org/I113940042"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.422,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.459016,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9922,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.68688387},{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.48739535},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.41333702}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8507849},{"id":"https://openalex.org/C522192633","wikidata":"https://www.wikidata.org/wiki/Q34228","display_name":"Sign language","level":2,"score":0.6942073},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.68688387},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.641591},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5242867},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.48739535},{"id":"https://openalex.org/C159437735","wikidata":"https://www.wikidata.org/wiki/Q1519524","display_name":"Gesture recognition","level":3,"score":0.45942357},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44420803},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.41333702},{"id":"https://openalex.org/C207347870","wikidata":"https://www.wikidata.org/wiki/Q371174","display_name":"Gesture","level":2,"score":0.3931172},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3831176},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn52387.2021.9533707","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.71,"id":"https://metadata.un.org/sdg/10"}],"grants":[{"funder":"https://openalex.org/F4320309612","funder_display_name":"Natural Science Foundation of Shanghai","award_id":"19ZR1419200"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61976132"}],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1522734439","https://openalex.org/W2104657103","https://openalex.org/W2194775991","https://openalex.org/W2295038166","https://openalex.org/W2395142465","https://openalex.org/W2516844836","https://openalex.org/W2518448700","https://openalex.org/W2554231256","https://openalex.org/W2756308237","https://openalex.org/W2891726870","https://openalex.org/W2897191608","https://openalex.org/W2908497602","https://openalex.org/W2941870244","https://openalex.org/W2962858109","https://openalex.org/W2963032654","https://openalex.org/W2963192057","https://openalex.org/W2963389958","https://openalex.org/W2963465695","https://openalex.org/W2963495494","https://openalex.org/W2963820951","https://openalex.org/W2973194960","https://openalex.org/W2992457155","https://openalex.org/W2997931247","https://openalex.org/W3034269985","https://openalex.org/W3091445217","https://openalex.org/W3101494737","https://openalex.org/W3103858256","https://openalex.org/W619311409"],"related_works":["https://openalex.org/W4312416068","https://openalex.org/W4308478915","https://openalex.org/W3147379364","https://openalex.org/W2902873204","https://openalex.org/W2893683540","https://openalex.org/W2805039731","https://openalex.org/W2185750513","https://openalex.org/W2026258298","https://openalex.org/W2010878661","https://openalex.org/W1986488374"],"abstract_inverted_index":{"Sign":[0],"language":[1,58,212],"recognition":[2,59],"(SLR)":[3],"has":[4],"become":[5],"increasingly":[6],"popular":[7],"in":[8,11,61,79],"recent":[9],"years":[10],"computer":[12],"vision.":[13],"It":[14],"is":[15,85,119,146],"essential":[16],"to":[17,22,40,73,99,121,148,194],"extract":[18],"discriminative":[19],"spatiotemporal":[20,70,111,123,199],"features":[21,124,184,193],"model":[23],"the":[24,62,68,75,83,89,96,101,104,127,132,138,150,155,161,169,190,215,219],"spatial":[25,170],"and":[26,35,82,131,167],"temporal":[27],"evolutions":[28],"of":[29,103,129,178,221],"different":[30,48],"signs.":[31],"Also,":[32],"local":[33],"gesture":[34],"facial":[36],"expression":[37],"representations":[38,177],"contribute":[39],"distinguishing":[41],"signs":[42],"with":[43,95,189],"similar":[44],"motion":[45],"patterns":[46],"but":[47],"meanings.":[49],"In":[50],"this":[51],"paper,":[52],"we":[53,66,158],"propose":[54],"a":[55,107,110],"multi-modal":[56],"sign":[57,211],"framework,":[60],"RGB":[63],"representation":[64],"model,":[65],"design":[67],"adaptive":[69],"attention":[71],"modules":[72],"fulfill":[74],"visual":[76],"cue":[77],"definition":[78],"signing":[80,108],"videos,":[81],"adapter":[84],"designed":[86],"for":[87,201],"constructing":[88],"auxiliary":[90],"task,":[91],"which":[92,173],"jointly":[93],"learning":[94],"SLR":[97],"task":[98],"enhances":[100],"performance":[102],"model.":[105],"Given":[106],"video,":[109],"attention-based":[112,139],"Pseudo-3D":[113],"Residual":[114],"Networks":[115,144],"(STA":[116],"P3D":[117],"ResNet)":[118],"used":[120],"learn":[122],"mainly":[125],"from":[126,154,185],"areas":[128],"interest":[130],"key":[133],"frames.":[134],"After":[135],"feature":[136],"extraction,":[137],"Bidirectional":[140],"Long":[141],"Short-Term":[142],"Memory":[143],"(Att-BLSTM)":[145],"utilized":[147],"select":[149],"significant":[151],"motions.":[152],"Meanwhile,":[153],"skeletal":[156,186],"data,":[157],"can":[159],"obtain":[160],"texture":[162],"image":[163],"by":[164],"color":[165],"encoding":[166],"construct":[168],"relation":[171],"features,":[172],"are":[174,204],"high":[175],"level":[176],"human":[179],"posture.":[180],"The":[181],"learnt":[182],"skeleton-based":[183],"data":[187],"fused":[188],"attention-aware":[191],"video":[192],"further":[195],"provide":[196],"more":[197],"informative":[198],"information":[200],"SLR.":[202],"Experiments":[203],"carried":[205],"out":[206],"on":[207],"two":[208],"large":[209],"scale":[210],"datasets.":[213],"And":[214],"experimental":[216],"results":[217],"demonstrate":[218],"effectiveness":[220],"our":[222],"proposed":[223],"method.":[224]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3198940792","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-04T16:11:10.741100","created_date":"2021-09-27"}