{"id":"https://openalex.org/W3200227040","doi":"https://doi.org/10.1109/ijcnn52387.2021.9533566","title":"Inverse Modeling of ADI for Prediction of Process Parameters Using PSO-MLP Technique","display_name":"Inverse Modeling of ADI for Prediction of Process Parameters Using PSO-MLP Technique","publication_year":2021,"publication_date":"2021-07-18","ids":{"openalex":"https://openalex.org/W3200227040","doi":"https://doi.org/10.1109/ijcnn52387.2021.9533566","mag":"3200227040"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn52387.2021.9533566","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014300745","display_name":"Ravindra V. Savangouder","orcid":"https://orcid.org/0000-0002-9554-7855"},"institutions":[{"id":"https://openalex.org/I57093077","display_name":"Swinburne University of Technology","ror":"https://ror.org/031rekg67","country_code":"AU","type":"education","lineage":["https://openalex.org/I57093077"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Ravindra V. Savangouder","raw_affiliation_strings":["Faculty of Science, Engineering and Technology, Swinburne University Technology, Melbourne, Australia"],"affiliations":[{"raw_affiliation_string":"Faculty of Science, Engineering and Technology, Swinburne University Technology, Melbourne, Australia","institution_ids":["https://openalex.org/I57093077"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049913930","display_name":"Jagdish C. Patra","orcid":"https://orcid.org/0000-0002-6257-0469"},"institutions":[{"id":"https://openalex.org/I57093077","display_name":"Swinburne University of Technology","ror":"https://ror.org/031rekg67","country_code":"AU","type":"education","lineage":["https://openalex.org/I57093077"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Jagdish C. Patra","raw_affiliation_strings":["Faculty of Science, Engineering and Technology, Swinburne University Technology, Melbourne, Australia"],"affiliations":[{"raw_affiliation_string":"Faculty of Science, Engineering and Technology, Swinburne University Technology, Melbourne, Australia","institution_ids":["https://openalex.org/I57093077"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5067586782","display_name":"Suresh Palanisamy","orcid":"https://orcid.org/0000-0003-1597-8696"},"institutions":[{"id":"https://openalex.org/I57093077","display_name":"Swinburne University of Technology","ror":"https://ror.org/031rekg67","country_code":"AU","type":"education","lineage":["https://openalex.org/I57093077"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Suresh Palanisamy","raw_affiliation_strings":["Faculty of Science, Engineering and Technology, Swinburne University Technology, Melbourne, Australia"],"affiliations":[{"raw_affiliation_string":"Faculty of Science, Engineering and Technology, Swinburne University Technology, Melbourne, Australia","institution_ids":["https://openalex.org/I57093077"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11201","display_name":"Metallurgy and Material Forming","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2211","display_name":"Mechanics of Materials"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11201","display_name":"Metallurgy and Material Forming","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2211","display_name":"Mechanics of Materials"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10386","display_name":"Microstructure and Mechanical Properties of Steels","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10700","display_name":"Metal Forming Simulation Techniques","score":0.996,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/austempering","display_name":"Austempering","score":0.8335242},{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.5571353}],"concepts":[{"id":"https://openalex.org/C85617194","wikidata":"https://www.wikidata.org/wiki/Q2072794","display_name":"Particle swarm optimization","level":2,"score":0.8554231},{"id":"https://openalex.org/C128262354","wikidata":"https://www.wikidata.org/wiki/Q3319824","display_name":"Austempering","level":5,"score":0.8335242},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.5571353},{"id":"https://openalex.org/C207467116","wikidata":"https://www.wikidata.org/wiki/Q4385666","display_name":"Inverse","level":2,"score":0.5396687},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.52472645},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.51225585},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4738976},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.4587079},{"id":"https://openalex.org/C135628077","wikidata":"https://www.wikidata.org/wiki/Q220184","display_name":"Finite element method","level":2,"score":0.44768125},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.395849},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.26065624},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.25712955},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24660757},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.17160374},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.16696078},{"id":"https://openalex.org/C191897082","wikidata":"https://www.wikidata.org/wiki/Q11467","display_name":"Metallurgy","level":1,"score":0.15633759},{"id":"https://openalex.org/C96288455","wikidata":"https://www.wikidata.org/wiki/Q487286","display_name":"Austenite","level":3,"score":0.0},{"id":"https://openalex.org/C44125496","wikidata":"https://www.wikidata.org/wiki/Q575611","display_name":"Bainite","level":4,"score":0.0},{"id":"https://openalex.org/C87976508","wikidata":"https://www.wikidata.org/wiki/Q1498213","display_name":"Microstructure","level":2,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn52387.2021.9533566","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.6,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1554825191","https://openalex.org/W1966580082","https://openalex.org/W1970352630","https://openalex.org/W2038572147","https://openalex.org/W2072552236","https://openalex.org/W2074648417","https://openalex.org/W2083405925","https://openalex.org/W2124086209","https://openalex.org/W2144584868","https://openalex.org/W2152195021","https://openalex.org/W2543580944","https://openalex.org/W2557575844","https://openalex.org/W2610197309","https://openalex.org/W2774558034","https://openalex.org/W2912397543","https://openalex.org/W2979402468","https://openalex.org/W2992896010","https://openalex.org/W2995012791","https://openalex.org/W3029383985","https://openalex.org/W3104772507"],"related_works":["https://openalex.org/W3037439103","https://openalex.org/W2919891455","https://openalex.org/W2393266050","https://openalex.org/W2389910334","https://openalex.org/W2366482351","https://openalex.org/W2314315125","https://openalex.org/W2140424691","https://openalex.org/W1982480350","https://openalex.org/W1650144273","https://openalex.org/W1512544798"],"abstract_inverted_index":{"Austempered":[0],"ductile":[1],"iron":[2],"(ADI)":[3],"has":[4,145],"recently":[5,194],"gained":[6],"popularity":[7],"over":[8],"forged":[9],"and":[10,25,38,64,83,107,122,133,155,197,217],"cast":[11],"steels":[12],"for":[13,46,70,160,208],"manufacturing":[14],"of":[15,53,60,114,178,186],"components":[16],"used":[17],"in":[18,88],"heavy":[19],"machinery,":[20],"such":[21],"as,":[22],"automobiles,":[23],"railways":[24],"farm":[26],"equipment":[27],"due":[28],"to":[29,33,77,86,102],"its":[30],"high":[31],"strength":[32,63],"weight":[34],"ratio,":[35],"casting":[36],"capabilities":[37],"other":[39],"attractive":[40],"properties.":[41],"The":[42],"current":[43],"industry":[44],"practice":[45],"producing":[47,220],"ADI":[48,54,61,105,115,179,205,221],"is":[49,100,189],"through":[50],"the":[51,104,118,128,134,151,156,198,204],"use":[52],"standards.":[55],"These":[56],"standards":[57],"specify":[58],"grades":[59],"with":[62,67,180,222],"hardness":[65,111],"specified":[66],"a":[68,93,140,161,181,193,209,223,229],"range":[69],"each":[71],"grade.":[72],"This":[73,212],"grading":[74],"system":[75],"leads":[76,85],"precious":[78],"alloying":[79,123,157],"elements":[80],"being":[81],"wasted":[82],"also":[84],"increase":[87],"cost.":[89],"In":[90],"this":[91],"study,":[92],"multilayer":[94],"perceptron":[95],"(MLP)-based":[96],"forward":[97,131,173],"modeling":[98],"scheme":[99],"proposed":[101],"simulate":[103],"process":[106,120,153,206],"accurately":[108,202],"predict":[109,150,176,203],"Vickers":[110],"number":[112],"(VHN)":[113],"based":[116],"on":[117],"austempering":[119,152],"parameters":[121,154,207],"element":[124,158],"proportions.":[125],"Then,":[126],"using":[127],"trained":[129],"MLP-based":[130,172],"model":[132,144,174,200,213],"particle":[135],"swarm":[136],"optimization":[137],"(PSO)":[138],"algorithm,":[139],"novel":[141],"PSO-MLP-based":[142],"inverse":[143,199],"been":[146],"proposed,":[147],"which":[148,188],"can":[149,175,201,214],"proportions":[159],"given":[162,210],"VHN.":[163,211],"With":[164],"extensive":[165],"simulation":[166],"results,":[167],"we":[168],"have":[169],"shown":[170],"that":[171],"VHN":[177,225],"mean":[182],"absolute":[183],"percent":[184],"error":[185],"0.21,":[187],"much":[190],"lower":[191],"than":[192,227],"reported":[195],"paper":[196],"reduce":[215],"wastage":[216],"cost":[218],"by":[219],"specific":[224],"rather":[226],"within":[228],"range.":[230]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3200227040","counts_by_year":[],"updated_date":"2024-12-15T17:46:26.611786","created_date":"2021-09-27"}